Solveeit Logo

Question

Question: The rate constants of two parallel first order reactions (I) and (II) are 1.50 $\times$ 10$^{-2}$s$^...

The rate constants of two parallel first order reactions (I) and (II) are 1.50 ×\times 102^{-2}s1^{-1} and 3.10 ×\times 102^{-2}s1^{-1} respectively

If the corresponding energies of activation of the parallel reactions are Ea1_1 = 64 kJ mol1^{-1} and Ea2_2 = 80 kJ mol1^{-1} then find out the energy of activation of the overall reaction in kJ mol1^{-1}.

Answer

74.78 kJ mol1^{-1}

Explanation

Solution

The problem involves two parallel first-order reactions. For such reactions, the overall rate constant (koverallk_{overall}) is the sum of the individual rate constants (k1k_1 and k2k_2).

koverall=k1+k2k_{overall} = k_1 + k_2

The Arrhenius equation relates the rate constant (kk) to the activation energy (EaE_a) and temperature (TT):

k=AeEa/RTk = A e^{-E_a / RT}

where A is the pre-exponential factor and R is the gas constant.

To find the overall activation energy (Ea,overallE_{a,overall}), we can differentiate the Arrhenius equation with respect to temperature. Taking the natural logarithm of the Arrhenius equation:

lnk=lnAEaRT\ln k = \ln A - \frac{E_a}{RT}

Differentiating with respect to temperature TT:

d(lnk)dT=0EaR(1T2)=EaRT2\frac{d(\ln k)}{dT} = 0 - \frac{E_a}{R} \left( -\frac{1}{T^2} \right) = \frac{E_a}{RT^2}

Also, we know that d(lnk)dT=1kdkdT\frac{d(\ln k)}{dT} = \frac{1}{k} \frac{dk}{dT}. So, 1kdkdT=EaRT2\frac{1}{k} \frac{dk}{dT} = \frac{E_a}{RT^2}, which implies dkdT=kEaRT2\frac{dk}{dT} = k \frac{E_a}{RT^2}.

For the overall reaction, we have:

dkoveralldT=dk1dT+dk2dT\frac{dk_{overall}}{dT} = \frac{dk_1}{dT} + \frac{dk_2}{dT}

Substitute the expression for dkdT\frac{dk}{dT} for each term:

koverallEa,overallRT2=k1Ea1RT2+k2Ea2RT2k_{overall} \frac{E_{a,overall}}{RT^2} = k_1 \frac{E_{a1}}{RT^2} + k_2 \frac{E_{a2}}{RT^2}

Multiplying both sides by RT2RT^2:

koverallEa,overall=k1Ea1+k2Ea2k_{overall} E_{a,overall} = k_1 E_{a1} + k_2 E_{a2}

Now, substitute koverall=k1+k2k_{overall} = k_1 + k_2:

(k1+k2)Ea,overall=k1Ea1+k2Ea2(k_1 + k_2) E_{a,overall} = k_1 E_{a1} + k_2 E_{a2}

Therefore, the overall activation energy is:

Ea,overall=k1Ea1+k2Ea2k1+k2E_{a,overall} = \frac{k_1 E_{a1} + k_2 E_{a2}}{k_1 + k_2}

Given values:

k1=1.50×102 s1k_1 = 1.50 \times 10^{-2} \text{ s}^{-1} Ea1=64 kJ mol1E_{a1} = 64 \text{ kJ mol}^{-1} k2=3.10×102 s1k_2 = 3.10 \times 10^{-2} \text{ s}^{-1} Ea2=80 kJ mol1E_{a2} = 80 \text{ kJ mol}^{-1}

Substitute these values into the formula:

Ea,overall=(1.50×102 s1)(64 kJ mol1)+(3.10×102 s1)(80 kJ mol1)1.50×102 s1+3.10×102 s1E_{a,overall} = \frac{(1.50 \times 10^{-2} \text{ s}^{-1})(64 \text{ kJ mol}^{-1}) + (3.10 \times 10^{-2} \text{ s}^{-1})(80 \text{ kJ mol}^{-1})}{1.50 \times 10^{-2} \text{ s}^{-1} + 3.10 \times 10^{-2} \text{ s}^{-1}}

We can factor out 10210^{-2} from the numerator and denominator:

Ea,overall=102(1.50×64+3.10×80)102(1.50+3.10)E_{a,overall} = \frac{10^{-2} (1.50 \times 64 + 3.10 \times 80)}{10^{-2} (1.50 + 3.10)} Ea,overall=1.50×64+3.10×801.50+3.10E_{a,overall} = \frac{1.50 \times 64 + 3.10 \times 80}{1.50 + 3.10}

Calculate the terms: Numerator: 1.50×64=96.01.50 \times 64 = 96.0 3.10×80=248.03.10 \times 80 = 248.0 Sum of numerator terms =96.0+248.0=344.0= 96.0 + 248.0 = 344.0

Denominator: 1.50+3.10=4.601.50 + 3.10 = 4.60

Now, calculate Ea,overallE_{a,overall}:

Ea,overall=344.04.60E_{a,overall} = \frac{344.0}{4.60} Ea,overall=344046E_{a,overall} = \frac{3440}{46} Ea,overall=172023E_{a,overall} = \frac{1720}{23} Ea,overall74.7826 kJ mol1E_{a,overall} \approx 74.7826 \text{ kJ mol}^{-1}

Rounding to two decimal places, the energy of activation of the overall reaction is 74.78 kJ mol174.78 \text{ kJ mol}^{-1}.

Explanation of the solution: For parallel first-order reactions, the overall rate constant (koverallk_{overall}) is the sum of the individual rate constants (k1+k2k_1 + k_2). The relationship between the overall activation energy (Ea,overallE_{a,overall}) and individual activation energies (Ea1,Ea2E_{a1}, E_{a2}) is derived by differentiating the Arrhenius equation for the overall reaction with respect to temperature. This yields the formula:

Ea,overall=k1Ea1+k2Ea2k1+k2E_{a,overall} = \frac{k_1 E_{a1} + k_2 E_{a2}}{k_1 + k_2}

Substitute the given values for k1k_1, Ea1E_{a1}, k2k_2, and Ea2E_{a2} into this formula and compute the result.