Solveeit Logo

Question

Question: | Compound | No. of lone pairs on 1 central atom | No. of d-orbitals used for hybridisation | | ---...

CompoundNo. of lone pairs on 1 central atomNo. of d-orbitals used for hybridisation
XeF3+XeF_3^+ω1\omega_1ω2\omega_2
I2Cl6I_2Cl_6ω3\omega_3ω4\omega_4

Find [ω1+ω2ω3+ω4]×100 [\frac{\omega_1 + \omega_2}{\omega_3 + \omega_4}] \times 100

Answer

75

Explanation

Solution

To determine the values of ω1,ω2,ω3,ω4\omega_1, \omega_2, \omega_3, \omega_4, we need to analyze the hybridization and lone pairs on the central atom for each compound.

1. For XeF3+XeF_3^+:

  • Central atom: Xe (Xenon)
  • Valence electrons of Xe: 8 (Group 18)
  • Charge: +1. This means one electron is removed from Xe.
    Effective valence electrons on Xe = 8 - 1 = 7.
  • Surrounding atoms: 3 F atoms. Each F forms a single bond with Xe.
  • Number of bond pairs (BP): 3 (for 3 Xe-F bonds)
  • Electrons used in bonding: 3 bonds ×\times 2 electrons/bond = 6 electrons.
  • Remaining electrons on Xe (for lone pairs): 7 (effective valence electrons) - 3 (electrons contributed by Xe to bonds) = 4 electrons.
  • Number of lone pairs (LP): 4 electrons / 2 electrons/pair = 2 lone pairs.
    So, ω1=2\omega_1 = 2.
  • Steric Number (SN): BP + LP = 3 + 2 = 5.
  • Hybridization for SN = 5: sp3dsp^3d.
  • Number of d-orbitals used for hybridization: 1.
    So, ω2=1\omega_2 = 1.

2. For I2Cl6I_2Cl_6:

I2Cl6I_2Cl_6 is a dimer of ICl3ICl_3. Each iodine atom is bonded to 4 chlorine atoms (2 terminal, 2 bridging). The geometry around each iodine is square planar.

Let's consider one central Iodine atom in I2Cl6I_2Cl_6.

  • Central atom: I (Iodine)
  • Valence electrons of I: 7 (Group 17)
  • Number of atoms bonded to one I: 4 (2 terminal Cl, 2 bridging Cl).
    So, Number of bond pairs (BP): 4.
  • Geometry around each I: Square planar.
    For a square planar geometry, the steric number is 6 (4 bond pairs + 2 lone pairs).
  • Number of lone pairs (LP): SN - BP = 6 - 4 = 2 lone pairs.
    So, ω3=2\omega_3 = 2.
  • Steric Number (SN): 6.
  • Hybridization for SN = 6: sp3d2sp^3d^2.
  • Number of d-orbitals used for hybridization: 2.
    So, ω4=2\omega_4 = 2.

Calculation:

We need to find [ω1+ω2ω3+ω4]×100 [\frac{\omega_1 + \omega_2}{\omega_3 + \omega_4}] \times 100.

  • ω1=2\omega_1 = 2
  • ω2=1\omega_2 = 1
  • ω3=2\omega_3 = 2
  • ω4=2\omega_4 = 2

[2+12+2]×100=[34]×100=0.75×100=75 [\frac{2 + 1}{2 + 2}] \times 100 = [\frac{3}{4}] \times 100 = 0.75 \times 100 = 75.