Solveeit Logo

Question

Question: Let f(x) be defined on R, such that $f(x) + x^2$ is an odd function, and $f(x) + 2^x$ is an even fun...

Let f(x) be defined on R, such that f(x)+x2f(x) + x^2 is an odd function, and f(x)+2xf(x) + 2^x is an even function. Then 8|f(1)| equals

Answer

14

Explanation

Solution

To solve this problem, we will use the definitions of odd and even functions.

A function g(x)g(x) is odd if g(x)=g(x)g(-x) = -g(x). A function h(x)h(x) is even if h(x)=h(x)h(-x) = h(x).

Given conditions:

  1. f(x)+x2f(x) + x^2 is an odd function. Let g(x)=f(x)+x2g(x) = f(x) + x^2. Since g(x)g(x) is odd, we have: g(x)=g(x)g(-x) = -g(x) f(x)+(x)2=(f(x)+x2)f(-x) + (-x)^2 = -(f(x) + x^2) f(x)+x2=f(x)x2f(-x) + x^2 = -f(x) - x^2 f(x)=f(x)2x2f(-x) = -f(x) - 2x^2 (Equation 1)

  2. f(x)+2xf(x) + 2^x is an even function. Let h(x)=f(x)+2xh(x) = f(x) + 2^x. Since h(x)h(x) is even, we have: h(x)=h(x)h(-x) = h(x) f(x)+2x=f(x)+2xf(-x) + 2^{-x} = f(x) + 2^x (Equation 2)

Now we have a system of two equations. Substitute the expression for f(x)f(-x) from Equation 1 into Equation 2: (f(x)2x2)+2x=f(x)+2x(-f(x) - 2x^2) + 2^{-x} = f(x) + 2^x

Rearrange the terms to solve for f(x)f(x): 2x2x22x=2f(x)2^{-x} - 2x^2 - 2^x = 2f(x) f(x)=2x2x2x22f(x) = \frac{2^{-x} - 2^x - 2x^2}{2} f(x)=2x2x2x2f(x) = \frac{2^{-x} - 2^x}{2} - x^2

Now we need to find the value of f(1)f(1). Substitute x=1x=1 into the expression for f(x)f(x): f(1)=2121212f(1) = \frac{2^{-1} - 2^1}{2} - 1^2 f(1)=1/2221f(1) = \frac{1/2 - 2}{2} - 1 f(1)=3/221f(1) = \frac{-3/2}{2} - 1 f(1)=341f(1) = -\frac{3}{4} - 1 f(1)=3444f(1) = -\frac{3}{4} - \frac{4}{4} f(1)=74f(1) = -\frac{7}{4}

Finally, we need to calculate 8f(1)8|f(1)|: 8f(1)=8748|f(1)| = 8 \left|-\frac{7}{4}\right| 8f(1)=8×748|f(1)| = 8 \times \frac{7}{4} 8f(1)=2×78|f(1)| = 2 \times 7 8f(1)=148|f(1)| = 14