Question
Question: If $\omega$ is a cube root of unity and $\omega \neq 1$, then $2 \cos \left( \sum_{k=1}^{10} (k-\ome...
If ω is a cube root of unity and ω=1, then 2cos(∑k=110(k−ω)(k−ω2)1350π) is equal to
A
1
Answer
1
Explanation
Solution
We are given that ω is a non-real cube root of unity, so
ω+ω2=−1andωω2=1.Thus,
(k−ω)(k−ω2)=k2−k(ω+ω2)+ωω2=k2+k+1.The sum becomes:
k=1∑10(k2+k+1)=k=1∑10k2+k=1∑10k+10.We know:
k=1∑10k2=385,k=1∑10k=55.Thus,
385+55+10=450.Then the expression inside cosine is:
4501350π=3π.Finally,
2cos3π=2(21)=1.