Solveeit Logo

Question

Question: If $\omega$ is a cube root of unity and $\omega \neq 1$, then $2 \cos \left( \sum_{k=1}^{10} (k-\ome...

If ω\omega is a cube root of unity and ω1\omega \neq 1, then 2cos(k=110(kω)(kω2)π1350)2 \cos \left( \sum_{k=1}^{10} (k-\omega)(k-\omega^2) \frac{\pi}{1350} \right) is equal to

A

1

Answer

1

Explanation

Solution

We are given that ω\omega is a non-real cube root of unity, so

ω+ω2=1andωω2=1.\omega + \omega^2 = -1 \quad \text{and} \quad \omega \omega^2 = 1.

Thus,

(kω)(kω2)=k2k(ω+ω2)+ωω2=k2+k+1.(k-\omega)(k-\omega^2) = k^2 - k(\omega+\omega^2) + \omega \omega^2 = k^2 + k + 1.

The sum becomes:

k=110(k2+k+1)=k=110k2+k=110k+10.\sum_{k=1}^{10} (k^2+k+1) = \sum_{k=1}^{10} k^2 + \sum_{k=1}^{10} k + 10.

We know:

k=110k2=385,k=110k=55.\sum_{k=1}^{10} k^2 = 385,\quad \sum_{k=1}^{10} k = 55.

Thus,

385+55+10=450.385 + 55 + 10 = 450.

Then the expression inside cosine is:

450π1350=π3.450\, \frac{\pi}{1350} = \frac{\pi}{3}.

Finally,

2cosπ3=2(12)=1.2\cos\frac{\pi}{3} = 2\left(\frac{1}{2}\right) = 1.