Solveeit Logo

Question

Question: The number of real solutions of $\sqrt{1 - \cos 2x} = \sqrt{2} \sin^{-1}(\sin x), -\pi \le x \le \fr...

The number of real solutions of 1cos2x=2sin1(sinx),πxπ2\sqrt{1 - \cos 2x} = \sqrt{2} \sin^{-1}(\sin x), -\pi \le x \le \frac{\pi}{2} is

Answer

2

Explanation

Solution

The equation 1cos2x=2sin1(sinx)\sqrt{1 - \cos 2x} = \sqrt{2} \sin^{-1}(\sin x) is simplified to 2sinx=2sin1(sinx)\sqrt{2} |\sin x| = \sqrt{2} \sin^{-1}(\sin x). This simplifies to sinx=sin1(sinx)|\sin x| = \sin^{-1}(\sin x). The given domain is πxπ2-\pi \le x \le \frac{\pi}{2}. We analyze the equation in two parts of the domain:

  1. For πx<π2-\pi \le x < -\frac{\pi}{2}: sinx=sinx|\sin x| = -\sin x and sin1(sinx)=πx\sin^{-1}(\sin x) = -\pi - x. The equation becomes sinx=πxsinx=π+x-\sin x = -\pi - x \Rightarrow \sin x = \pi + x. By analyzing the graphs or functions, x=πx = -\pi is the only solution.

  2. For π2xπ2-\frac{\pi}{2} \le x \le \frac{\pi}{2}:

    a. For π2x<0-\frac{\pi}{2} \le x < 0: sinx=sinx|\sin x| = -\sin x and sin1(sinx)=x\sin^{-1}(\sin x) = x. The equation becomes sinx=xsinx=x-\sin x = x \Rightarrow \sin x = -x. This has no solutions in this interval.

    b. For 0xπ20 \le x \le \frac{\pi}{2}: sinx=sinx|\sin x| = \sin x and sin1(sinx)=x\sin^{-1}(\sin x) = x. The equation becomes sinx=x\sin x = x. This equation has only one solution, x=0x=0.

Combining all valid solutions, we get x=πx = -\pi and x=0x = 0. Therefore, there are 2 real solutions.