Solveeit Logo

Question

Question: If $f(x)$ be a twice differentiable function from R → R such that $t^2 f(x) - 2tf'(x) + f''(x) = 0$ ...

If f(x)f(x) be a twice differentiable function from R → R such that t2f(x)2tf(x)+f(x)=0t^2 f(x) - 2tf'(x) + f''(x) = 0 has two equal roots of tt, x\forall x and f(0)=1f(0) = 1, f(0)=3f'(0) = 3, then the value of limx0(f(x)1xt3)\lim_{x \to 0} \left( \frac{f(x)-1}{x} - \frac{t}{3} \right) is

Answer

2

Explanation

Solution

The condition that the quadratic equation t2f(x)2tf(x)+f(x)=0t^2 f(x) - 2tf'(x) + f''(x) = 0 has two equal roots in tt implies that its discriminant is zero. The discriminant is (2f(x))24(f(x))(f(x))(-2f'(x))^2 - 4(f(x))(f''(x)). Setting this to zero gives 4(f(x))24f(x)f(x)=04(f'(x))^2 - 4f(x)f''(x) = 0, which simplifies to (f(x))2=f(x)f(x)(f'(x))^2 = f(x)f''(x).

This differential equation can be rewritten as f(x)f(x)=f(x)f(x)\frac{f''(x)}{f'(x)} = \frac{f'(x)}{f(x)}. Integrating both sides with respect to xx yields lnf(x)=lnf(x)+C1\ln|f'(x)| = \ln|f(x)| + C_1, which leads to f(x)=kf(x)f'(x) = kf(x) for some constant kk.

The solution to f(x)=kf(x)f'(x) = kf(x) is f(x)=Aekxf(x) = Ae^{kx}. Using the initial condition f(0)=1f(0) = 1, we get Aek0=1A e^{k \cdot 0} = 1, so A=1A=1. Thus, f(x)=ekxf(x) = e^{kx}. The derivative is f(x)=kekxf'(x) = ke^{kx}. Using the initial condition f(0)=3f'(0) = 3, we get kek0=3ke^{k \cdot 0} = 3, so k=3k=3. Therefore, the function is f(x)=e3xf(x) = e^{3x}.

The value of the repeated root tt for the quadratic equation t2f(x)2tf(x)+f(x)=0t^2 f(x) - 2tf'(x) + f''(x) = 0 is given by t=2f(x)2f(x)=f(x)f(x)t = \frac{2f'(x)}{2f(x)} = \frac{f'(x)}{f(x)}. Substituting f(x)=e3xf(x)=e^{3x} and f(x)=3e3xf'(x)=3e^{3x}, we find t=3e3xe3x=3t = \frac{3e^{3x}}{e^{3x}} = 3. So, tt is a constant value of 33.

The limit to evaluate is limx0(f(x)1xt3)\lim_{x \to 0} \left( \frac{f(x)-1}{x} - \frac{t}{3} \right). Substituting f(x)=e3xf(x) = e^{3x} and t=3t=3, we get: limx0(e3x1x33)=limx0(e3x1x1)\lim_{x \to 0} \left( \frac{e^{3x}-1}{x} - \frac{3}{3} \right) = \lim_{x \to 0} \left( \frac{e^{3x}-1}{x} - 1 \right) We know the standard limit limy0ey1y=1\lim_{y \to 0} \frac{e^y-1}{y} = 1. By setting y=3xy=3x, we have limx0e3x1x=limx0e3x13x3=13=3\lim_{x \to 0} \frac{e^{3x}-1}{x} = \lim_{x \to 0} \frac{e^{3x}-1}{3x} \cdot 3 = 1 \cdot 3 = 3. Alternatively, limx0f(x)1x\lim_{x \to 0} \frac{f(x)-1}{x} is the definition of f(0)f'(0). Given f(0)=3f'(0)=3, the limit is f(0)t3=333=31=2f'(0) - \frac{t}{3} = 3 - \frac{3}{3} = 3 - 1 = 2.