Solveeit Logo

Question

Question: Consider a function y = f(x) satisfying differential equation $\cos xdy = y(\sin x - y)dx, 0 < x < \...

Consider a function y = f(x) satisfying differential equation cosxdy=y(sinxy)dx,0<x<π2\cos xdy = y(\sin x - y)dx, 0 < x < \frac{\pi}{2} such that f(π4)=2f(\frac{\pi}{4})=-\sqrt{2}. Then the value of limx(π2)f(x) \lim_{x \to (\frac{\pi}{2})^{-}} f(x) is

A

1

B

-1

C

0

D

2\sqrt{2}

Answer

1

Explanation

Solution

The given differential equation is cosxdy=y(sinxy)dx\cos x dy = y(\sin x - y)dx. Rearranging, we get dydx=y(sinxy)cosx=ytanxy2secx\frac{dy}{dx} = \frac{y(\sin x - y)}{\cos x} = y \tan x - y^2 \sec x. This is a Bernoulli's differential equation of the form dydx+P(x)y=Q(x)yn\frac{dy}{dx} + P(x)y = Q(x)y^n, with P(x)=tanxP(x) = -\tan x, Q(x)=secxQ(x) = -\sec x, and n=2n=2.

To solve this, we divide by yn=y2y^n = y^2: y2dydxy1tanx=secxy^{-2}\frac{dy}{dx} - y^{-1}\tan x = -\sec x. Let v=y1n=y1v = y^{1-n} = y^{-1}. Then dvdx=y2dydx\frac{dv}{dx} = -y^{-2}\frac{dy}{dx}. Substituting these into the equation gives: dvdxvtanx=secx-\frac{dv}{dx} - v \tan x = -\sec x. Multiplying by -1, we get: dvdx+vtanx=secx\frac{dv}{dx} + v \tan x = \sec x.

This is a first-order linear differential equation. The integrating factor (I.F.) is: I.F. = eP(x)dx=etanxdx=elnsecx=secxe^{\int P(x) dx} = e^{\int \tan x dx} = e^{\ln|\sec x|} = \sec x (since 0<x<π20 < x < \frac{\pi}{2}, secx>0\sec x > 0).

Multiplying the linear equation by the I.F.: secxdvdx+vsecxtanx=sec2x\sec x \frac{dv}{dx} + v \sec x \tan x = \sec^2 x. The left side is the derivative of the product v(I.F.)v \cdot (\text{I.F.}): ddx(vsecx)=sec2x\frac{d}{dx}(v \sec x) = \sec^2 x.

Integrating both sides with respect to xx: ddx(vsecx)dx=sec2xdx\int \frac{d}{dx}(v \sec x) dx = \int \sec^2 x dx vsecx=tanx+Cv \sec x = \tan x + C.

Substitute back v=1yv = \frac{1}{y}: 1ysecx=tanx+C\frac{1}{y} \sec x = \tan x + C. 1ycosx=sinxcosx+C=sinx+Ccosxcosx\frac{1}{y \cos x} = \frac{\sin x}{\cos x} + C = \frac{\sin x + C \cos x}{\cos x}. 1y=sinx+Ccosx\frac{1}{y} = \sin x + C \cos x. So, the general solution is y=f(x)=1sinx+Ccosxy = f(x) = \frac{1}{\sin x + C \cos x}.

We are given the initial condition f(π4)=2f(\frac{\pi}{4}) = -\sqrt{2}. Substitute x=π4x = \frac{\pi}{4} and y=2y = -\sqrt{2}: 2=1sin(π4)+Ccos(π4)-\sqrt{2} = \frac{1}{\sin(\frac{\pi}{4}) + C \cos(\frac{\pi}{4})}. 2=112+C12=112(1+C)=21+C-\sqrt{2} = \frac{1}{\frac{1}{\sqrt{2}} + C \frac{1}{\sqrt{2}}} = \frac{1}{\frac{1}{\sqrt{2}}(1+C)} = \frac{\sqrt{2}}{1+C}. Dividing both sides by 2\sqrt{2}: 1=11+C-1 = \frac{1}{1+C}. 1+C=1    C=21+C = -1 \implies C = -2.

Thus, the particular solution is y=f(x)=1sinx2cosxy = f(x) = \frac{1}{\sin x - 2 \cos x}.

We need to find the limit of f(x)f(x) as x(π2)x \to (\frac{\pi}{2})^{-}. limx(π2)f(x)=limx(π2)1sinx2cosx\lim_{x \to (\frac{\pi}{2})^{-}} f(x) = \lim_{x \to (\frac{\pi}{2})^{-}} \frac{1}{\sin x - 2 \cos x}. As x(π2)x \to (\frac{\pi}{2})^{-}, sinxsin(π2)=1\sin x \to \sin(\frac{\pi}{2}) = 1 and cosxcos(π2)=0\cos x \to \cos(\frac{\pi}{2}) = 0. The denominator approaches 12(0)=11 - 2(0) = 1. Therefore, the limit is 11=1\frac{1}{1} = 1.