Solveeit Logo

Question

Question: In a first order reaction, $\text{R} \rightarrow \text{P}$; the concentration of R changes from 1.2 ...

In a first order reaction, RP\text{R} \rightarrow \text{P}; the concentration of R changes from 1.2 M to 0.30 M in 47 min. The rate of reaction in mol L1min1\text{mol L}^{-1} \text{min}^{-1} at a time when concentration of R is 0.2 M would be a×103a \times 10^{-3}. Find the value of a.

Answer

6

Explanation

Solution

The problem involves a first-order reaction, for which we need to calculate the rate constant first, and then use it to find the rate of reaction at a specific concentration.

1. Calculate the rate constant (k): For a first-order reaction, the integrated rate law is: k=1tln([R]0[R]t)k = \frac{1}{t} \ln\left(\frac{[\text{R}]_0}{[\text{R}]_t}\right) Given: Initial concentration, [R]0=1.2[\text{R}]_0 = 1.2 M Concentration after time t, [R]t=0.30[\text{R}]_t = 0.30 M Time, t=47t = 47 min

Substitute the values into the equation: k=147 minln(1.2 M0.30 M)k = \frac{1}{47 \text{ min}} \ln\left(\frac{1.2 \text{ M}}{0.30 \text{ M}}\right) k=147ln(4)k = \frac{1}{47} \ln(4)

We know that ln(4)=2ln(2)\ln(4) = 2 \ln(2). Using the common approximation ln(2)0.693\ln(2) \approx 0.693: ln(4)2×0.693=1.386\ln(4) \approx 2 \times 0.693 = 1.386

Now, calculate k: k=1.38647 min1k = \frac{1.386}{47} \text{ min}^{-1} k0.029489 min1k \approx 0.029489 \text{ min}^{-1}

2. Calculate the rate of reaction: For a first-order reaction, the rate law is: Rate =k[R]= k[\text{R}] We need to find the rate when the concentration of R is 0.2 M. Rate =0.029489 min1×0.2 M= 0.029489 \text{ min}^{-1} \times 0.2 \text{ M} Rate 0.0058978 mol L1 min1\approx 0.0058978 \text{ mol L}^{-1} \text{ min}^{-1}

3. Express the rate in the required format and find 'a': The rate is given in the format a×103 mol L1 min1a \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}. So, a×103=0.0058978a \times 10^{-3} = 0.0058978 a=0.0058978103a = \frac{0.0058978}{10^{-3}} a=5.8978a = 5.8978

Rounding 'a' to the nearest integer, as is common in such problems, we get a=6a=6.