Solveeit Logo

Question

Question: Let $ABCD$ is a regular tetrahedron, and $E$ and $F$ are the mid-points of the edges $AC$ and $AB$ r...

Let ABCDABCD is a regular tetrahedron, and EE and FF are the mid-points of the edges ACAC and ABAB respectively and GG is the centroid of the face ABCABC. Let θ\theta is the angle between the vectors EG\overrightarrow{EG} and DF\overrightarrow{DF}, then

A

The angle between DA\overrightarrow{DA} and BC\overrightarrow{BC} is π3\frac{\pi}{3}

B

The angle between AB\overrightarrow{AB} and DC\overrightarrow{DC} is π2\frac{\pi}{2}

C

θ=cos1(123)\theta = \cos^{-1}(-\frac{1}{2\sqrt{3}})

D

θ=tan1(11)\theta = \tan^{-1}(\sqrt{11})

Answer

The angle between AB\overrightarrow{AB} and DC\overrightarrow{DC} is π2\frac{\pi}{2}

Explanation

Solution

Let the side length of the regular tetrahedron be aa. We place vertex AA at the origin, so A=0\overrightarrow{A} = \mathbf{0}. Let the position vectors of the other vertices be B\overrightarrow{B}, C\overrightarrow{C}, and D\overrightarrow{D}. For a regular tetrahedron with side length aa: B=C=D=a|\overrightarrow{B}| = |\overrightarrow{C}| = |\overrightarrow{D}| = a. The angle between any two edges originating from the same vertex is 6060^\circ (π/3\pi/3). Thus, the dot products are: BC=BCcos(π/3)=aa12=a22\overrightarrow{B} \cdot \overrightarrow{C} = |\overrightarrow{B}| |\overrightarrow{C}| \cos(\pi/3) = a \cdot a \cdot \frac{1}{2} = \frac{a^2}{2}. Similarly, BD=a22\overrightarrow{B} \cdot \overrightarrow{D} = \frac{a^2}{2} and CD=a22\overrightarrow{C} \cdot \overrightarrow{D} = \frac{a^2}{2}.

EE is the midpoint of ACAC, so AE=12AC=12C\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\overrightarrow{C}. FF is the midpoint of ABAB, so AF=12AB=12B\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{B}. GG is the centroid of the face ABCABC. The position vector of the centroid of a triangle with vertices A,B,CA, B, C is A+B+C3\frac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}. Since AA is the origin, AG=0+B+C3=B+C3\overrightarrow{AG} = \frac{\overrightarrow{0}+\overrightarrow{B}+\overrightarrow{C}}{3} = \frac{\overrightarrow{B}+\overrightarrow{C}}{3}.

Now, we find the vectors EG\overrightarrow{EG} and DF\overrightarrow{DF}: EG=AGAE=B+C3C2=2(B+C)3C6=2BC6\overrightarrow{EG} = \overrightarrow{AG} - \overrightarrow{AE} = \frac{\overrightarrow{B}+\overrightarrow{C}}{3} - \frac{\overrightarrow{C}}{2} = \frac{2(\overrightarrow{B}+\overrightarrow{C}) - 3\overrightarrow{C}}{6} = \frac{2\overrightarrow{B} - \overrightarrow{C}}{6}. DF=AFAD=B2D\overrightarrow{DF} = \overrightarrow{AF} - \overrightarrow{AD} = \frac{\overrightarrow{B}}{2} - \overrightarrow{D}.

To find the angle θ\theta between EG\overrightarrow{EG} and DF\overrightarrow{DF}, we use the formula cosθ=EGDFEGDF\cos \theta = \frac{\overrightarrow{EG} \cdot \overrightarrow{DF}}{|\overrightarrow{EG}| |\overrightarrow{DF}|}.

Calculate the dot product EGDF\overrightarrow{EG} \cdot \overrightarrow{DF}: EGDF=(2BC6)(B2D)\overrightarrow{EG} \cdot \overrightarrow{DF} = \left(\frac{2\overrightarrow{B} - \overrightarrow{C}}{6}\right) \cdot \left(\frac{\overrightarrow{B}}{2} - \overrightarrow{D}\right) =112(2BC)(B2D)= \frac{1}{12} (2\overrightarrow{B} - \overrightarrow{C}) \cdot (\overrightarrow{B} - 2\overrightarrow{D}) =112(2BB4BDCB+2CD)= \frac{1}{12} (2\overrightarrow{B}\cdot\overrightarrow{B} - 4\overrightarrow{B}\cdot\overrightarrow{D} - \overrightarrow{C}\cdot\overrightarrow{B} + 2\overrightarrow{C}\cdot\overrightarrow{D}) Substitute the dot product values: =112(2a24(a22)a22+2(a22))= \frac{1}{12} \left(2a^2 - 4\left(\frac{a^2}{2}\right) - \frac{a^2}{2} + 2\left(\frac{a^2}{2}\right)\right) =112(2a22a2a22+a2)=112(a22)=a224= \frac{1}{12} \left(2a^2 - 2a^2 - \frac{a^2}{2} + a^2\right) = \frac{1}{12} \left(\frac{a^2}{2}\right) = \frac{a^2}{24}.

Calculate the magnitudes EG|\overrightarrow{EG}| and DF|\overrightarrow{DF}|: EG2=2BC62=136(2BC)(2BC)|\overrightarrow{EG}|^2 = \left|\frac{2\overrightarrow{B} - \overrightarrow{C}}{6}\right|^2 = \frac{1}{36} (2\overrightarrow{B} - \overrightarrow{C}) \cdot (2\overrightarrow{B} - \overrightarrow{C}) =136(4B24BC+C2)= \frac{1}{36} (4|\overrightarrow{B}|^2 - 4\overrightarrow{B}\cdot\overrightarrow{C} + |\overrightarrow{C}|^2) =136(4a24(a22)+a2)=136(4a22a2+a2)=3a236=a212= \frac{1}{36} \left(4a^2 - 4\left(\frac{a^2}{2}\right) + a^2\right) = \frac{1}{36} (4a^2 - 2a^2 + a^2) = \frac{3a^2}{36} = \frac{a^2}{12}. EG=a212=a23|\overrightarrow{EG}| = \sqrt{\frac{a^2}{12}} = \frac{a}{2\sqrt{3}}.

DF2=B2D2=(B2D)(B2D)|\overrightarrow{DF}|^2 = \left|\frac{\overrightarrow{B}}{2} - \overrightarrow{D}\right|^2 = \left(\frac{\overrightarrow{B}}{2} - \overrightarrow{D}\right) \cdot \left(\frac{\overrightarrow{B}}{2} - \overrightarrow{D}\right) =14B2BD+D2= \frac{1}{4}|\overrightarrow{B}|^2 - \overrightarrow{B}\cdot\overrightarrow{D} + |\overrightarrow{D}|^2 =14a2a22+a2=a2(1412+1)=3a24= \frac{1}{4}a^2 - \frac{a^2}{2} + a^2 = a^2 \left(\frac{1}{4} - \frac{1}{2} + 1\right) = \frac{3a^2}{4}. DF=3a24=a32|\overrightarrow{DF}| = \sqrt{\frac{3a^2}{4}} = \frac{a\sqrt{3}}{2}.

Now, calculate cosθ\cos \theta: cosθ=a2/24(a23)(a32)=a2/24a2(3)24=a2/243a2/4\cos \theta = \frac{a^2/24}{\left(\frac{a}{2\sqrt{3}}\right) \left(\frac{a\sqrt{3}}{2}\right)} = \frac{a^2/24}{\frac{a^2 (\sqrt{3})^2}{4}} = \frac{a^2/24}{3a^2/4} cosθ=a22443a2=472=118\cos \theta = \frac{a^2}{24} \cdot \frac{4}{3a^2} = \frac{4}{72} = \frac{1}{18}.

Let's check the given options: A. The angle between DA\overrightarrow{DA} and BC\overrightarrow{BC} is π3\frac{\pi}{3}. The angle between AD\overrightarrow{AD} and BC\overrightarrow{BC} is π/2\pi/2 (as their dot product is 0). The angle between DA\overrightarrow{DA} and BC\overrightarrow{BC} is also π/2\pi/2. So, A is false.

B. The angle between AB\overrightarrow{AB} and DC\overrightarrow{DC} is π2\frac{\pi}{2}. The angle between AB\overrightarrow{AB} and DC\overrightarrow{DC} is π/2\pi/2 (as their dot product is 0). So, B is true.

C. θ=cos1(123)\theta = \cos^{-1}(-\frac{1}{2\sqrt{3}}). This implies cosθ=123\cos \theta = -\frac{1}{2\sqrt{3}}. This is not 1/181/18. So, C is false.

D. θ=tan1(11)\theta = \tan^{-1}(\sqrt{11}). If tanθ=11\tan \theta = \sqrt{11}, then sec2θ=1+tan2θ=1+(11)2=1+11=12\sec^2 \theta = 1 + \tan^2 \theta = 1 + (\sqrt{11})^2 = 1 + 11 = 12. So, cos2θ=1sec2θ=112\cos^2 \theta = \frac{1}{\sec^2 \theta} = \frac{1}{12}. This implies cosθ=±112=±123\cos \theta = \pm \frac{1}{\sqrt{12}} = \pm \frac{1}{2\sqrt{3}}. This is not 1/181/18. So, D is false.

Based on the calculations, only statement B is correct. The calculated value for θ\theta does not match options C or D.