Solveeit Logo

Question

Question: If $M$ be the area of the region (in square units) defined by $\{(x, y) \in R^2: x^2 + y^2 \leq 5, y...

If MM be the area of the region (in square units) defined by {(x,y)R2:x2+y25,y24x,x1}\{(x, y) \in R^2: x^2 + y^2 \leq 5, y^2 \leq 4x, x \geq 1\}, then MM is equal to

A

5π2+25sin1(15)\frac{5\pi}{2} + 2 - 5\sin^{-1}(\frac{1}{\sqrt{5}})

B

5π225sin1(15)\frac{5\pi}{2} - 2 - 5\sin^{-1}(\frac{1}{\sqrt{5}})

C

5π4152sin1(15)\frac{5\pi}{4} - 1 - \frac{5}{2}\sin^{-1}(\frac{1}{\sqrt{5}})

D

5π4+152sin1(15)\frac{5\pi}{4} + 1 - \frac{5}{2}\sin^{-1}(\frac{1}{\sqrt{5}})

Answer

5π225sin1(15)\frac{5\pi}{2} - 2 - 5\sin^{-1}(\frac{1}{\sqrt{5}})

Explanation

Solution

The problem asks for the area of the region defined by the inequalities:

  1. x2+y25x^2 + y^2 \leq 5 (Region inside or on the circle centered at the origin with radius R=5R=\sqrt{5})
  2. y24xy^2 \leq 4x (Region inside or on the parabola y2=4xy^2 = 4x opening to the right)
  3. x1x \geq 1 (Region to the right of or on the vertical line x=1x=1)

Let's find the intersection points of the boundary curves:

  • Circle x2+y2=5x^2+y^2=5 and Line x=1x=1: Substitute x=1x=1 into the circle equation: 12+y2=5    y2=4    y=±21^2+y^2=5 \implies y^2=4 \implies y=\pm 2. So the intersection points are (1,2)(1,2) and (1,2)(1,-2).
  • Parabola y2=4xy^2=4x and Line x=1x=1: Substitute x=1x=1 into the parabola equation: y2=4(1)    y2=4    y=±2y^2=4(1) \implies y^2=4 \implies y=\pm 2. So the intersection points are (1,2)(1,2) and (1,2)(1,-2).
  • Circle x2+y2=5x^2+y^2=5 and Parabola y2=4xy^2=4x: Substitute y2=4xy^2=4x into the circle equation: x2+4x=5    x2+4x5=0    (x+5)(x1)=0x^2+4x=5 \implies x^2+4x-5=0 \implies (x+5)(x-1)=0. This gives x=1x=1 or x=5x=-5. Since y2=4xy^2=4x, xx must be non-negative for real yy. So x=1x=1. If x=1x=1, y2=4y^2=4, so y=±2y=\pm 2. The intersection points are (1,2)(1,2) and (1,2)(1,-2).

All three boundaries intersect at (1,2)(1,2) and (1,2)(1,-2).

Now, let's determine the actual region. We need the intersection of the three regions defined by the inequalities. Consider the region defined by x2+y25x^2+y^2 \leq 5 and x1x \geq 1. This is a circular segment of the circle x2+y2=5x^2+y^2=5 to the right of the line x=1x=1. For this region, the xx-values range from 11 to 5\sqrt{5} (the maximum xx for the circle).

Let's check if the condition y24xy^2 \leq 4x is redundant for points in this circular segment. For any point (x,y)(x,y) such that x2+y25x^2+y^2 \leq 5 and x1x \geq 1: We know y25x2y^2 \leq 5-x^2. We need to check if 5x24x5-x^2 \leq 4x for x[1,5]x \in [1, \sqrt{5}]. The inequality 5x24x5-x^2 \leq 4x can be rewritten as x2+4x50x^2+4x-5 \geq 0. Factoring the quadratic, we get (x+5)(x1)0(x+5)(x-1) \geq 0. Since x1x \geq 1, (x+5)(x+5) is positive and (x1)(x-1) is non-negative. Thus, their product (x+5)(x1)(x+5)(x-1) is always non-negative for x1x \geq 1. This means that for any point (x,y)(x,y) satisfying x2+y25x^2+y^2 \leq 5 and x1x \geq 1, the condition y24xy^2 \leq 4x is automatically satisfied.

Therefore, the region MM is simply the area of the circular segment defined by x2+y25x^2+y^2 \leq 5 and x1x \geq 1. The region is symmetric about the x-axis, so we can calculate the area for y0y \geq 0 and multiply by 2. For y0y \geq 0, the upper boundary is y=5x2y = \sqrt{5-x^2}. The area MM is given by the integral:

M=1525x2dxM = \int_{1}^{\sqrt{5}} 2\sqrt{5-x^2} dx

This is a standard integral of the form a2x2dx=x2a2x2+a22sin1(xa)\int \sqrt{a^2-x^2} dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right). Here a2=5a^2=5, so a=5a=\sqrt{5}.

M=2[x25x2+52sin1(x5)]15M = 2 \left[ \frac{x}{2}\sqrt{5-x^2} + \frac{5}{2}\sin^{-1}\left(\frac{x}{\sqrt{5}}\right) \right]_{1}^{\sqrt{5}} M=[x5x2+5sin1(x5)]15M = \left[ x\sqrt{5-x^2} + 5\sin^{-1}\left(\frac{x}{\sqrt{5}}\right) \right]_{1}^{\sqrt{5}}

Now, evaluate the definite integral: At the upper limit x=5x=\sqrt{5}:

55(5)2+5sin1(55)=50+5sin1(1)=0+5(π2)=5π2\sqrt{5}\sqrt{5-(\sqrt{5})^2} + 5\sin^{-1}\left(\frac{\sqrt{5}}{\sqrt{5}}\right) = \sqrt{5}\sqrt{0} + 5\sin^{-1}(1) = 0 + 5\left(\frac{\pi}{2}\right) = \frac{5\pi}{2}

At the lower limit x=1x=1:

1512+5sin1(15)=4+5sin1(15)=2+5sin1(15)1\sqrt{5-1^2} + 5\sin^{-1}\left(\frac{1}{\sqrt{5}}\right) = \sqrt{4} + 5\sin^{-1}\left(\frac{1}{\sqrt{5}}\right) = 2 + 5\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)

Subtract the lower limit value from the upper limit value:

M=5π2(2+5sin1(15))M = \frac{5\pi}{2} - \left( 2 + 5\sin^{-1}\left(\frac{1}{\sqrt{5}}\right) \right) M=5π225sin1(15)M = \frac{5\pi}{2} - 2 - 5\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)