Solveeit Logo

Question

Question: Determine the moment about point A of each of the three forces acting on the beam....

Determine the moment about point A of each of the three forces acting on the beam.

Answer

Moment due to F1: M1 = -3000 lb⋅ft (or 3000 lb⋅ft clockwise)

Moment due to F2: M2 = -5600 lb⋅ft (or 5600 lb⋅ft clockwise)

Moment due to F3: M3 = (40√3 - 1520) lb⋅ft ≈ -1450.72 lb⋅ft (or 1450.72 lb⋅ft clockwise)

Explanation

Solution

To determine the moment about point A for each force, we use the formula M=F×dM = F \times d, where FF is the force and dd is the perpendicular distance from point A to the line of action of the force. We will use the convention that counter-clockwise moments are positive and clockwise moments are negative.

1. Moment due to Force F1=375 lbF_1 = 375 \text{ lb}

  • Force: F1=375 lbF_1 = 375 \text{ lb} (acting downwards).
  • Perpendicular distance from A: d1=8 ftd_1 = 8 \text{ ft}.
  • Direction of rotation about A: Clockwise.
  • Moment: M1=F1×d1=375 lb×8 ft=3000 lbftM_1 = -F_1 \times d_1 = -375 \text{ lb} \times 8 \text{ ft} = -3000 \text{ lb} \cdot \text{ft}

2. Moment due to Force F2=500 lbF_2 = 500 \text{ lb}

First, resolve F2F_2 into its horizontal (F2xF_{2x}) and vertical (F2yF_{2y}) components. The force is defined by a 3-4-5 triangle, where the vertical component corresponds to 4 and the horizontal to 3.

  • Vertical component: F2y=F2×45=500 lb×45=400 lbF_{2y} = F_2 \times \frac{4}{5} = 500 \text{ lb} \times \frac{4}{5} = 400 \text{ lb} (acting downwards).
  • Horizontal component: F2x=F2×35=500 lb×35=300 lbF_{2x} = F_2 \times \frac{3}{5} = 500 \text{ lb} \times \frac{3}{5} = 300 \text{ lb} (acting to the left).

Now, calculate the moment for each component about A:

  • Moment due to F2yF_{2y}:
    • Perpendicular distance from A: d2y=8 ft+6 ft=14 ftd_{2y} = 8 \text{ ft} + 6 \text{ ft} = 14 \text{ ft}.
    • Direction of rotation about A: Clockwise.
    • Moment: M2y=F2y×d2y=400 lb×14 ft=5600 lbftM_{2y} = -F_{2y} \times d_{2y} = -400 \text{ lb} \times 14 \text{ ft} = -5600 \text{ lb} \cdot \text{ft}
  • Moment due to F2xF_{2x}:
    • The horizontal component F2xF_{2x} acts along the beam's axis (assuming A is on the axis). Therefore, its line of action passes through the same vertical level as point A.
    • Perpendicular distance from A: d2x=0 ftd_{2x} = 0 \text{ ft}.
    • Moment: M2x=F2x×d2x=300 lb×0 ft=0 lbftM_{2x} = F_{2x} \times d_{2x} = 300 \text{ lb} \times 0 \text{ ft} = 0 \text{ lb} \cdot \text{ft}
  • Total moment due to F2F_2: M2=M2x+M2y=05600 lbft=5600 lbftM_2 = M_{2x} + M_{2y} = 0 - 5600 \text{ lb} \cdot \text{ft} = -5600 \text{ lb} \cdot \text{ft}

3. Moment due to Force F3=160 lbF_3 = 160 \text{ lb}

First, resolve F3F_3 into its horizontal (F3xF_{3x}) and vertical (F3yF_{3y}) components. The force acts at 3030^\circ below the horizontal.

  • Horizontal component: F3x=F3cos(30)=160 lb×32=803 lbF_{3x} = F_3 \cos(30^\circ) = 160 \text{ lb} \times \frac{\sqrt{3}}{2} = 80\sqrt{3} \text{ lb} (acting to the right).
  • Vertical component: F3y=F3sin(30)=160 lb×12=80 lbF_{3y} = F_3 \sin(30^\circ) = 160 \text{ lb} \times \frac{1}{2} = 80 \text{ lb} (acting downwards).

The force F3F_3 is applied at point B, which is 0.5 ft0.5 \text{ ft} below the beam's axis and at a total horizontal distance from A: dh=8 ft+6 ft+5 ft=19 ftd_h = 8 \text{ ft} + 6 \text{ ft} + 5 \text{ ft} = 19 \text{ ft}.

Now, calculate the moment for each component about A:

  • Moment due to F3xF_{3x}:
    • The horizontal component F3xF_{3x} acts to the right at a vertical distance of 0.5 ft0.5 \text{ ft} below A.
    • Perpendicular distance from A: d3x=0.5 ftd_{3x} = 0.5 \text{ ft}.
    • Direction of rotation about A: Counter-clockwise.
    • Moment: M3x=F3x×d3x=803 lb×0.5 ft=403 lbft69.28 lbftM_{3x} = F_{3x} \times d_{3x} = 80\sqrt{3} \text{ lb} \times 0.5 \text{ ft} = 40\sqrt{3} \text{ lb} \cdot \text{ft} \approx 69.28 \text{ lb} \cdot \text{ft}
  • Moment due to F3yF_{3y}:
    • The vertical component F3yF_{3y} acts downwards at a horizontal distance of 19 ft19 \text{ ft} from A.
    • Perpendicular distance from A: d3y=19 ftd_{3y} = 19 \text{ ft}.
    • Direction of rotation about A: Clockwise.
    • Moment: M3y=F3y×d3y=80 lb×19 ft=1520 lbftM_{3y} = -F_{3y} \times d_{3y} = -80 \text{ lb} \times 19 \text{ ft} = -1520 \text{ lb} \cdot \text{ft}
  • Total moment due to F3F_3: M3=M3x+M3y=403 lbft1520 lbft69.281520=1450.72 lbftM_3 = M_{3x} + M_{3y} = 40\sqrt{3} \text{ lb} \cdot \text{ft} - 1520 \text{ lb} \cdot \text{ft} \approx 69.28 - 1520 = -1450.72 \text{ lb} \cdot \text{ft}

Summary of Results:

  • Moment due to F1F_1: M1=3000 lbftM_1 = -3000 \text{ lb} \cdot \text{ft} (or 3000 lbft3000 \text{ lb} \cdot \text{ft} clockwise)
  • Moment due to F2F_2: M2=5600 lbftM_2 = -5600 \text{ lb} \cdot \text{ft} (or 5600 lbft5600 \text{ lb} \cdot \text{ft} clockwise)
  • Moment due to F3F_3: M3=(4031520) lbft1450.72 lbftM_3 = (40\sqrt{3} - 1520) \text{ lb} \cdot \text{ft} \approx -1450.72 \text{ lb} \cdot \text{ft} (or 1450.72 lbft1450.72 \text{ lb} \cdot \text{ft} clockwise)