Solveeit Logo

Question

Question: $Ag(s)|Ag^+(aq)(1M)||Ag^+(aq)(2M)|Ag(s)$ (1L) (1L) 0.4 F of electricity in anode and 0.8 F in t...

Ag(s)Ag+(aq)(1M)Ag+(aq)(2M)Ag(s)Ag(s)|Ag^+(aq)(1M)||Ag^+(aq)(2M)|Ag(s)

(1L) (1L)

0.4 F of electricity in anode and 0.8 F in the cathode is first passed by making them independent electrolytic cell at 298 K. EMF of cell after electrolysis will be

Answer

-0.0040 V

Explanation

Solution

The problem describes a concentration cell and then asks for its EMF after some electrolysis is performed independently on each compartment.

1. Initial State of the Cell: The cell is given as: Ag(s)Ag+(aq)(1M)Ag+(aq)(2M)Ag(s)Ag(s)|Ag^+(aq)(1M)||Ag^+(aq)(2M)|Ag(s) This implies:

  • Anode (Left Compartment): Ag(s)Ag+(aq)+eAg(s) \rightarrow Ag^+(aq) + e^- with initial [Ag+]=1 M[Ag^+] = 1 \text{ M}. Volume = 1 L, so initial moles of Ag+Ag^+ = 1 mole.
  • Cathode (Right Compartment): Ag+(aq)+eAg(s)Ag^+(aq) + e^- \rightarrow Ag(s) with initial [Ag+]=2 M[Ag^+] = 2 \text{ M}. Volume = 1 L, so initial moles of Ag+Ag^+ = 2 moles.

2. Effect of Electrolysis:

  • Anode Compartment (Independent Electrolytic Cell): 0.4 F of electricity is passed. In an electrolytic cell, the anode is where oxidation occurs. Reaction at anode: Ag(s)Ag+(aq)+eAg(s) \rightarrow Ag^+(aq) + e^- 1 Faraday (F) of electricity corresponds to 1 mole of electrons. So, 0.4 F means 0.4 moles of electrons are passed. According to the stoichiometry, 1 mole of electrons produces 1 mole of Ag+Ag^+. Therefore, 0.4 moles of electrons will produce 0.4 moles of Ag+Ag^+. Initial moles of Ag+Ag^+ in the anode compartment = 1 M×1 L=1 mole1 \text{ M} \times 1 \text{ L} = 1 \text{ mole}. Final moles of Ag+Ag^+ in the anode compartment = 1 mole+0.4 moles=1.4 moles1 \text{ mole} + 0.4 \text{ moles} = 1.4 \text{ moles}. Since the volume is 1 L, the final concentration of Ag+Ag^+ at the anode ([Ag+]L[Ag^+]_L) = 1.4 M1.4 \text{ M}.

  • Cathode Compartment (Independent Electrolytic Cell): 0.8 F of electricity is passed. In an electrolytic cell, the cathode is where reduction occurs. Reaction at cathode: Ag+(aq)+eAg(s)Ag^+(aq) + e^- \rightarrow Ag(s) 0.8 F means 0.8 moles of electrons are passed. According to the stoichiometry, 1 mole of electrons consumes 1 mole of Ag+Ag^+. Therefore, 0.8 moles of electrons will consume 0.8 moles of Ag+Ag^+. Initial moles of Ag+Ag^+ in the cathode compartment = 2 M×1 L=2 moles2 \text{ M} \times 1 \text{ L} = 2 \text{ moles}. Final moles of Ag+Ag^+ in the cathode compartment = 2 moles0.8 moles=1.2 moles2 \text{ moles} - 0.8 \text{ moles} = 1.2 \text{ moles}. Since the volume is 1 L, the final concentration of Ag+Ag^+ at the cathode ([Ag+]R[Ag^+]_R) = 1.2 M1.2 \text{ M}.

3. EMF of the Cell After Electrolysis: The cell after electrolysis is: Ag(s)Ag+(aq)(1.4M)Ag+(aq)(1.2M)Ag(s)Ag(s)|Ag^+(aq)(1.4M)||Ag^+(aq)(1.2M)|Ag(s) This is a concentration cell, so the standard cell potential (EcellE^\circ_{cell}) is 0 V. The Nernst equation for a concentration cell at 298 K is: Ecell=Ecell0.0592nlogQE_{cell} = E^\circ_{cell} - \frac{0.0592}{n} \log Q Where:

  • nn is the number of electrons transferred in the cell reaction (n=1n=1 for Ag+/AgAg^+/Ag).
  • QQ is the reaction quotient. For the cell reaction Ag+(aq)cathodeAg+(aq)anodeAg^+(aq)_{cathode} \rightarrow Ag^+(aq)_{anode}, Q=[Ag+]anode[Ag+]cathodeQ = \frac{[Ag^+]_{anode}}{[Ag^+]_{cathode}}.

Substituting the values: [Ag+]anode=1.4 M[Ag^+]_{anode} = 1.4 \text{ M} [Ag+]cathode=1.2 M[Ag^+]_{cathode} = 1.2 \text{ M}

Ecell=00.05921log(1.41.2)E_{cell} = 0 - \frac{0.0592}{1} \log \left(\frac{1.4}{1.2}\right) Ecell=0.0592log(76)E_{cell} = -0.0592 \log \left(\frac{7}{6}\right) Ecell=0.0592(log7log6)E_{cell} = -0.0592 (\log 7 - \log 6) Using log70.8451\log 7 \approx 0.8451 and log60.7782\log 6 \approx 0.7782: Ecell=0.0592(0.84510.7782)E_{cell} = -0.0592 (0.8451 - 0.7782) Ecell=0.0592(0.0669)E_{cell} = -0.0592 (0.0669) Ecell0.003959 VE_{cell} \approx -0.003959 \text{ V}

Rounding to appropriate significant figures, Ecell0.0040 VE_{cell} \approx -0.0040 \text{ V}. The negative sign indicates that the cell reaction, as written (oxidation at the left electrode, reduction at the right electrode), is non-spontaneous. The spontaneous reaction would be in the reverse direction.

The final answer is 0.0040 V\boxed{-0.0040 \text{ V}}

Explanation of the solution:

  1. Calculate final concentrations:
    • Anode compartment: Initial moles Ag+Ag^+ = 1 M ×\times 1 L = 1 mol. Electrolysis adds 0.4 mol Ag+Ag^+ (0.4 F×1 mol Ag+/F0.4 \text{ F} \times 1 \text{ mol } Ag^+/\text{F}). Final [Ag+][Ag^+] = (1 + 0.4) mol / 1 L = 1.4 M.
    • Cathode compartment: Initial moles Ag+Ag^+ = 2 M ×\times 1 L = 2 mol. Electrolysis consumes 0.8 mol Ag+Ag^+ (0.8 F×1 mol Ag+/F0.8 \text{ F} \times 1 \text{ mol } Ag^+/\text{F}). Final [Ag+][Ag^+] = (2 - 0.8) mol / 1 L = 1.2 M.
  2. Apply Nernst Equation: For a concentration cell Ecell=0E^\circ_{cell} = 0. The cell is Ag(s)Ag+(aq)(1.4M)Ag+(aq)(1.2M)Ag(s)Ag(s)|Ag^+(aq)(1.4M)||Ag^+(aq)(1.2M)|Ag(s). Ecell=0.0592nlog([Ag+]anode[Ag+]cathode)E_{cell} = -\frac{0.0592}{n} \log \left(\frac{[Ag^+]_{anode}}{[Ag^+]_{cathode}}\right) Ecell=0.05921log(1.41.2)E_{cell} = -\frac{0.0592}{1} \log \left(\frac{1.4}{1.2}\right) Ecell=0.0592log(76)0.0592×0.06690.0040 VE_{cell} = -0.0592 \log \left(\frac{7}{6}\right) \approx -0.0592 \times 0.0669 \approx -0.0040 \text{ V}.