Solveeit Logo

Question

Question: Let $y = f(x)$ is a solution to differential equation $\sin(x\frac{dy}{dx})\cos y = \frac{dy}{dx} + ...

Let y=f(x)y = f(x) is a solution to differential equation sin(xdydx)cosy=dydx+sinycos(xdydx),x1\sin(x\frac{dy}{dx})\cos y = \frac{dy}{dx} + \sin y \cos(x\frac{dy}{dx}), x \ge 1. Then which of the following option(s) can be correct? (where CC is constant of integration)

A

f(x) = 0

B

f(x) = cx^2 - \sin^{-1}x

C

f(x) = \sqrt{x^2 - 1} - \sec^{-1}(x) + C

D

f(x) = cx - \sin^{-1}C

Answer

A, C, D

Explanation

Solution

The given differential equation is sin(xdydx)cosy=dydx+sinycos(xdydx)\sin(x\frac{dy}{dx})\cos y = \frac{dy}{dx} + \sin y \cos(x\frac{dy}{dx}).

Rearranging the terms, we get: sin(xdydx)cosysinycos(xdydx)=dydx\sin(x\frac{dy}{dx})\cos y - \sin y \cos(x\frac{dy}{dx}) = \frac{dy}{dx}

Using the trigonometric identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B, with A=xdydxA = x\frac{dy}{dx} and B=yB = y, we have: sin(xdydxy)=dydx\sin(x\frac{dy}{dx} - y) = \frac{dy}{dx}

This is a differential equation of the form dydx=f(xdydxy)\frac{dy}{dx} = f(x\frac{dy}{dx} - y). Let z=xdydxyz = x\frac{dy}{dx} - y. Then dzdx=ddx(xdydxy)=(1dydx+xd2ydx2)dydx=xd2ydx2\frac{dz}{dx} = \frac{d}{dx}(x\frac{dy}{dx} - y) = (1 \cdot \frac{dy}{dx} + x\frac{d^2y}{dx^2}) - \frac{dy}{dx} = x\frac{d^2y}{dx^2}.

The equation becomes sin(z)=dydx\sin(z) = \frac{dy}{dx}. Substitute dydx=sin(z)\frac{dy}{dx} = \sin(z) into the definition of zz: z=xsin(z)yz = x\sin(z) - y Rearranging for yy: y=xsin(z)zy = x\sin(z) - z

Now, differentiate this expression for yy with respect to xx: dydx=ddx(xsin(z)z)\frac{dy}{dx} = \frac{d}{dx}(x\sin(z) - z) dydx=(1sin(z)+xcos(z)dzdx)dzdx\frac{dy}{dx} = (1 \cdot \sin(z) + x \cos(z) \frac{dz}{dx}) - \frac{dz}{dx}

Since dydx=sin(z)\frac{dy}{dx} = \sin(z), we have: sin(z)=sin(z)+xcos(z)dzdxdzdx\sin(z) = \sin(z) + x \cos(z) \frac{dz}{dx} - \frac{dz}{dx} 0=(xcos(z)1)dzdx0 = (x \cos(z) - 1) \frac{dz}{dx}

This equation implies either dzdx=0\frac{dz}{dx} = 0 or xcos(z)1=0x \cos(z) - 1 = 0.

Case 1: dzdx=0\frac{dz}{dx} = 0 This means zz is a constant. Let z=αz = \alpha. Then dydx=sin(α)\frac{dy}{dx} = \sin(\alpha). Substituting z=αz=\alpha and dydx=sin(α)\frac{dy}{dx}=\sin(\alpha) into y=xsin(z)zy = x\sin(z) - z: y=xsin(α)αy = x\sin(\alpha) - \alpha Let c=sin(α)c = \sin(\alpha). Since 1sin(α)1-1 \le \sin(\alpha) \le 1, cc must be in [1,1][-1, 1]. Then α=sin1(c)\alpha = \sin^{-1}(c) (using the principal value). So, y=cxsin1(c)y = cx - \sin^{-1}(c). This matches Option D. This solution is valid for any constant cc such that 1c1-1 \le c \le 1.

Case 2: xcos(z)1=0x \cos(z) - 1 = 0 This implies cos(z)=1x\cos(z) = \frac{1}{x}. For x1x \ge 1, we can write z=±cos1(1x)z = \pm \cos^{-1}(\frac{1}{x}). Also, dydx=sin(z)\frac{dy}{dx} = \sin(z). If cos(z)=1x\cos(z) = \frac{1}{x}, then sin(z)=±1cos2(z)=±11x2=±x21x\sin(z) = \pm \sqrt{1 - \cos^2(z)} = \pm \sqrt{1 - \frac{1}{x^2}} = \pm \frac{\sqrt{x^2 - 1}}{x}.

Let's check Option A: f(x)=0f(x) = 0. If y=0y=0, then dydx=0\frac{dy}{dx}=0. Substituting into the original equation: sin(x0)cos(0)=0+sin(0)cos(x0)    sin(0)1=0+01    0=0\sin(x \cdot 0) \cos(0) = 0 + \sin(0) \cos(x \cdot 0) \implies \sin(0) \cdot 1 = 0 + 0 \cdot 1 \implies 0=0. So, y=0y=0 is a solution. This corresponds to Option D with c=0c=0.

Let's check Option C: f(x)=x21sec1(x)+Cf(x) = \sqrt{x^2 - 1} - \sec^{-1}(x) + C. Let y=x21sec1(x)+Cy = \sqrt{x^2 - 1} - \sec^{-1}(x) + C. Then dydx=xx211xx21=x21xx21=x21x\frac{dy}{dx} = \frac{x}{\sqrt{x^2 - 1}} - \frac{1}{x\sqrt{x^2 - 1}} = \frac{x^2 - 1}{x\sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1}}{x}. Let's evaluate z=xdydxyz = x\frac{dy}{dx} - y: z=x(x21x)(x21sec1(x)+C)z = x \left(\frac{\sqrt{x^2 - 1}}{x}\right) - \left(\sqrt{x^2 - 1} - \sec^{-1}(x) + C\right) z=x21x21+sec1(x)Cz = \sqrt{x^2 - 1} - \sqrt{x^2 - 1} + \sec^{-1}(x) - C z=sec1(x)Cz = \sec^{-1}(x) - C.

We need to check if this is consistent with Case 2, where cos(z)=1x\cos(z) = \frac{1}{x}. We know sec1(x)=cos1(1x)\sec^{-1}(x) = \cos^{-1}(\frac{1}{x}) for x1x \ge 1. So, z=cos1(1x)Cz = \cos^{-1}(\frac{1}{x}) - C. For this to satisfy cos(z)=1x\cos(z) = \frac{1}{x}, we must have cos(cos1(1x)C)=1x\cos(\cos^{-1}(\frac{1}{x}) - C) = \frac{1}{x}. Let θ=cos1(1x)\theta = \cos^{-1}(\frac{1}{x}). Then cos(θC)=cos(θ)\cos(\theta - C) = \cos(\theta). This implies θC=θ+2kπ\theta - C = \theta + 2k\pi or θC=θ+2kπ\theta - C = -\theta + 2k\pi for some integer kk. If θC=θ+2kπ\theta - C = \theta + 2k\pi, then C=2kπC = -2k\pi. If CC is a multiple of 2π2\pi, this holds. If θC=θ+2kπ\theta - C = -\theta + 2k\pi, then C=2θ2kπ=2cos1(1x)2kπC = 2\theta - 2k\pi = 2\cos^{-1}(\frac{1}{x}) - 2k\pi. This means CC depends on xx, which is not allowed for a constant of integration.

However, the question asks which option can be correct. If we choose C=0C=0 in Option C, then z=sec1(x)z = \sec^{-1}(x). Then cos(z)=cos(sec1(x))=cos(cos1(1x))=1x\cos(z) = \cos(\sec^{-1}(x)) = \cos(\cos^{-1}(\frac{1}{x})) = \frac{1}{x}. And dydx=x21x\frac{dy}{dx} = \frac{\sqrt{x^2 - 1}}{x}. We need to check if dydx=sin(z)\frac{dy}{dx} = \sin(z). sin(z)=sin(sec1(x))\sin(z) = \sin(\sec^{-1}(x)). Let θ=sec1(x)\theta = \sec^{-1}(x). Then secθ=x\sec \theta = x. For x1x \ge 1, 0θ<π/20 \le \theta < \pi/2. sinθ=1cos2θ=11x2=x21x\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{1}{x^2}} = \frac{\sqrt{x^2-1}}{x}. So, dydx=sin(z)\frac{dy}{dx} = \sin(z) holds. Thus, y=x21sec1(x)y = \sqrt{x^2 - 1} - \sec^{-1}(x) (Option C with C=0C=0) is a valid solution.

Let's check Option B: f(x)=cx2sin1xf(x) = cx^2 - \sin^{-1}x. The term sin1x\sin^{-1}x is defined for 1x1-1 \le x \le 1. The question states x1x \ge 1. For x>1x>1, sin1x\sin^{-1}x is not defined. Thus, Option B cannot be a solution.

Therefore, Options A, C, and D can be correct.