Solveeit Logo

Question

Question: Consider vector equations $\vec{x} + \vec{c} \times \vec{y} = \vec{a}, \vec{y} + \vec{c} \times \vec...

Consider vector equations x+c×y=a,y+c×x=b\vec{x} + \vec{c} \times \vec{y} = \vec{a}, \vec{y} + \vec{c} \times \vec{x} = \vec{b}. Then which of the following option(s) is/are correct?

A

x=11+c2((ca)c+aa×c)\vec{x} = \frac{1}{1+c^2}((\vec{c} \cdot \vec{a})\vec{c} + \vec{a} - \vec{a} \times \vec{c})

B

x=11+c2((ca)c+a+b×c)\vec{x} = \frac{1}{1+c^2}((\vec{c} \cdot \vec{a})\vec{c} + \vec{a} + \vec{b} \times \vec{c})

C

y=11+c2((cb)c+bb×c)\vec{y} = \frac{1}{1+c^2}((\vec{c} \cdot \vec{b})\vec{c} + \vec{b} - \vec{b} \times \vec{c})

D

y=11+c2((cb)c+b+c×a)\vec{y} = \frac{1}{1+c^2}((\vec{c} \cdot \vec{b})\vec{c} + \vec{b} + \vec{c} \times \vec{a})

Answer

B, D

Explanation

Solution

We are given the vector equations:

  1. x+c×y=a\vec{x} + \vec{c} \times \vec{y} = \vec{a}
  2. y+c×x=b\vec{y} + \vec{c} \times \vec{x} = \vec{b}

From equation (2), we can express y\vec{y} as: y=bc×x\vec{y} = \vec{b} - \vec{c} \times \vec{x}

Substitute this expression for y\vec{y} into equation (1): x+c×(bc×x)=a\vec{x} + \vec{c} \times (\vec{b} - \vec{c} \times \vec{x}) = \vec{a} x+c×bc×(c×x)=a\vec{x} + \vec{c} \times \vec{b} - \vec{c} \times (\vec{c} \times \vec{x}) = \vec{a}

Using the vector triple product identity u×(v×w)=(uw)v(uv)w\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w}, we have c×(c×x)=(cx)c(cc)x\vec{c} \times (\vec{c} \times \vec{x}) = (\vec{c} \cdot \vec{x})\vec{c} - (\vec{c} \cdot \vec{c})\vec{x}. Let c2=ccc^2 = \vec{c} \cdot \vec{c}. So, c×(c×x)=(cx)cc2x\vec{c} \times (\vec{c} \times \vec{x}) = (\vec{c} \cdot \vec{x})\vec{c} - c^2 \vec{x}.

Substituting this back into the equation: x+c×b[(cx)cc2x]=a\vec{x} + \vec{c} \times \vec{b} - [(\vec{c} \cdot \vec{x})\vec{c} - c^2 \vec{x}] = \vec{a} x+c×b(cx)c+c2x=a\vec{x} + \vec{c} \times \vec{b} - (\vec{c} \cdot \vec{x})\vec{c} + c^2 \vec{x} = \vec{a} Rearranging terms to solve for x\vec{x}: (1+c2)x(cx)c=ac×b(1+c^2)\vec{x} - (\vec{c} \cdot \vec{x})\vec{c} = \vec{a} - \vec{c} \times \vec{b}

To solve for x\vec{x}, we can project this equation onto c\vec{c} and onto the plane perpendicular to c\vec{c}. Let x=kc+x\vec{x} = k\vec{c} + \vec{x}_\perp, where xc=0\vec{x}_\perp \cdot \vec{c} = 0. The component parallel to c\vec{c} is: (1+c2)kc(kcc)c=(ac×b)cc(1+c^2)k\vec{c} - (k\vec{c} \cdot \vec{c})\vec{c} = (\vec{a} - \vec{c} \times \vec{b}) \cdot \frac{\vec{c}}{c} (1+c2)kckc2c=ac(c×b)cc(1+c^2)k\vec{c} - k c^2 \vec{c} = \frac{\vec{a} \cdot \vec{c} - (\vec{c} \times \vec{b}) \cdot \vec{c}}{c} kc=acccc=acc2ck\vec{c} = \frac{\vec{a} \cdot \vec{c}}{c} \frac{\vec{c}}{c} = \frac{\vec{a} \cdot \vec{c}}{c^2} \vec{c}. So, k=acc2k = \frac{\vec{a} \cdot \vec{c}}{c^2}.

The component perpendicular to c\vec{c} is: (1+c2)x=ac×bkc(1+c^2)\vec{x}_\perp = \vec{a} - \vec{c} \times \vec{b} - k\vec{c} x=11+c2(ac×bacc2c)\vec{x}_\perp = \frac{1}{1+c^2} \left( \vec{a} - \vec{c} \times \vec{b} - \frac{\vec{a} \cdot \vec{c}}{c^2} \vec{c} \right)

Then x=kc+x=acc2c+11+c2(ac×bacc2c)\vec{x} = k\vec{c} + \vec{x}_\perp = \frac{\vec{a} \cdot \vec{c}}{c^2} \vec{c} + \frac{1}{1+c^2} \left( \vec{a} - \vec{c} \times \vec{b} - \frac{\vec{a} \cdot \vec{c}}{c^2} \vec{c} \right) x=acc2c(111+c2)+11+c2(ac×b)\vec{x} = \frac{\vec{a} \cdot \vec{c}}{c^2} \vec{c} \left( 1 - \frac{1}{1+c^2} \right) + \frac{1}{1+c^2} (\vec{a} - \vec{c} \times \vec{b}) x=acc2c(c21+c2)+11+c2(ac×b)\vec{x} = \frac{\vec{a} \cdot \vec{c}}{c^2} \vec{c} \left( \frac{c^2}{1+c^2} \right) + \frac{1}{1+c^2} (\vec{a} - \vec{c} \times \vec{b}) x=(ca)c1+c2+ac×b1+c2=11+c2((ca)c+ac×b)\vec{x} = \frac{(\vec{c} \cdot \vec{a})\vec{c}}{1+c^2} + \frac{\vec{a} - \vec{c} \times \vec{b}}{1+c^2} = \frac{1}{1+c^2} ((\vec{c} \cdot \vec{a})\vec{c} + \vec{a} - \vec{c} \times \vec{b})

Comparing this with the options: Option B is x=11+c2((ca)c+a+b×c)\vec{x} = \frac{1}{1+c^2}((\vec{c} \cdot \vec{a})\vec{c} + \vec{a} + \vec{b} \times \vec{c}). Since b×c=c×b\vec{b} \times \vec{c} = -\vec{c} \times \vec{b}, Option B is correct.

By symmetry, we can find the expression for y\vec{y} by swapping a\vec{a} and b\vec{b} in the expression for x\vec{x}: y=11+c2((cb)c+bc×a)\vec{y} = \frac{1}{1+c^2} ((\vec{c} \cdot \vec{b})\vec{c} + \vec{b} - \vec{c} \times \vec{a})

Comparing this with the options: Option D is y=11+c2((cb)c+b+c×a)\vec{y} = \frac{1}{1+c^2}((\vec{c} \cdot \vec{b})\vec{c} + \vec{b} + \vec{c} \times \vec{a}). Since c×a=a×c\vec{c} \times \vec{a} = -\vec{a} \times \vec{c}, Option D is correct.

The correct options are B and D.