Question
Question: $\frac{1}{sin 2^{\circ}} + \frac{1}{sin 4^{\circ}} + \frac{1}{sin 8^{\circ}} + \frac{1}{sin 16^{\cir...
sin2∘1+sin4∘1+sin8∘1+sin16∘1+sin32∘1+sin64∘1 is equal to
Answer
cot1∘−cot64∘
Explanation
Solution
We use the identity
cscθ=cot2θ−cotθ.Apply this to each term:
sin2∘1sin4∘1sin8∘1sin16∘1sin32∘1sin64∘1=csc2∘=cot1∘−cot2∘,=csc4∘=cot2∘−cot4∘,=csc8∘=cot4∘−cot8∘,=csc16∘=cot8∘−cot16∘,=csc32∘=cot16∘−cot32∘,=csc64∘=cot32∘−cot64∘.Adding all these we see the telescoping cancellation:
S=(cot1∘−cot2∘)+(cot2∘−cot4∘)+(cot4∘−cot8∘)+(cot8∘−cot16∘)+(cot16∘−cot32∘)+(cot32∘−cot64∘)=cot1∘−cot64∘.Explanation (minimal):
Using cscθ=cot2θ−cotθ, write each term and add them to get a telescoping sum which reduces to cot1∘−cot64∘.