Solveeit Logo

Question

Question: Consider a curve passing through the points (0, 0) and ($x_1$, 2), whose differential equation is $(...

Consider a curve passing through the points (0, 0) and (x1x_1, 2), whose differential equation is (x+y2)dy+(yx)dx=0(x + y - 2) dy + (y - x) dx = 0. Then the value of x1x_1 is

A

-2

B

-1

C

1

D

2

Answer

2

Explanation

Solution

The given differential equation is (x+y2)dy+(yx)dx=0(x + y - 2) dy + (y - x) dx = 0. This can be rewritten as dydx=xyx+y2\frac{dy}{dx} = \frac{x - y}{x + y - 2}. This is a non-homogeneous linear differential equation. We can make it homogeneous by a substitution. Let x=X+hx = X + h and y=Y+ky = Y + k. Then dx=dXdx = dX and dy=dYdy = dY. Substituting these into the equation: ((X+h)+(Y+k)2)dY+((Y+k)(X+h))dX=0((X+h) + (Y+k) - 2) dY + ((Y+k) - (X+h)) dX = 0 (X+Y+h+k2)dY+(YX+kh)dX=0(X + Y + h + k - 2) dY + (Y - X + k - h) dX = 0 To make this homogeneous, we need the constant terms to be zero:

  1. h+k2=0h + k - 2 = 0
  2. kh=0k - h = 0 From (2), k=hk = h. Substituting into (1): h+h2=0    2h=2    h=1h + h - 2 = 0 \implies 2h = 2 \implies h = 1. Thus, k=1k = 1. The substitution is x=X+1x = X + 1 and y=Y+1y = Y + 1, which means X=x1X = x - 1 and Y=y1Y = y - 1. The differential equation in terms of XX and YY becomes: (X+Y)dY+(YX)dX=0(X + Y) dY + (Y - X) dX = 0 dYdX=XYX+Y\frac{dY}{dX} = \frac{X - Y}{X + Y} This is a homogeneous differential equation. Let Y=vXY = vX. Then dYdX=v+XdvdX\frac{dY}{dX} = v + X\frac{dv}{dX}. v+XdvdX=XvXX+vX=1v1+vv + X\frac{dv}{dX} = \frac{X - vX}{X + vX} = \frac{1 - v}{1 + v} XdvdX=1v1+vv=1vv(1+v)1+v=12vv21+vX\frac{dv}{dX} = \frac{1 - v}{1 + v} - v = \frac{1 - v - v(1 + v)}{1 + v} = \frac{1 - 2v - v^2}{1 + v} Separating variables: 1+v12vv2dv=dXX\frac{1 + v}{1 - 2v - v^2} dv = \frac{dX}{X} Integrating both sides: 1+v12vv2dv=dXX\int \frac{1 + v}{1 - 2v - v^2} dv = \int \frac{dX}{X} The integral on the left is 12ln12vv2-\frac{1}{2} \ln|1 - 2v - v^2|. So, 12ln12vv2=lnX+C1-\frac{1}{2} \ln|1 - 2v - v^2| = \ln|X| + C_1 ln12vv21/2=lnX+C1\ln|1 - 2v - v^2|^{-1/2} = \ln|X| + C_1 112vv2=AX\frac{1}{\sqrt{1 - 2v - v^2}} = A|X| where A=eC1A = e^{C_1} Squaring both sides: 112vv2=A2X2\frac{1}{1 - 2v - v^2} = A^2 X^2 1=A2X2(12YXY2X2)1 = A^2 X^2 (1 - 2\frac{Y}{X} - \frac{Y^2}{X^2}) 1=A2(X22XYY2)1 = A^2 (X^2 - 2XY - Y^2) X22XYY2=CX^2 - 2XY - Y^2 = C' where C=1/A2C' = 1/A^2. Substituting back X=x1X = x - 1 and Y=y1Y = y - 1: (x1)22(x1)(y1)(y1)2=C(x - 1)^2 - 2(x - 1)(y - 1) - (y - 1)^2 = C' The curve passes through (0, 0). Substitute x=0,y=0x=0, y=0: (1)22(1)(1)(1)2=C(-1)^2 - 2(-1)(-1) - (-1)^2 = C' 121=C    C=21 - 2 - 1 = C' \implies C' = -2. The equation of the curve is (x1)22(x1)(y1)(y1)2=2(x - 1)^2 - 2(x - 1)(y - 1) - (y - 1)^2 = -2. The curve passes through (x1x_1, 2). Substitute x=x1,y=2x=x_1, y=2: (x11)22(x11)(21)(21)2=2(x_1 - 1)^2 - 2(x_1 - 1)(2 - 1) - (2 - 1)^2 = -2 (x11)22(x11)(1)(1)2=2(x_1 - 1)^2 - 2(x_1 - 1)(1) - (1)^2 = -2 (x11)22(x11)1=2(x_1 - 1)^2 - 2(x_1 - 1) - 1 = -2 Let Z=x11Z = x_1 - 1. Then Z22Z1=2    Z22Z+1=0Z^2 - 2Z - 1 = -2 \implies Z^2 - 2Z + 1 = 0. This factors as (Z1)2=0(Z - 1)^2 = 0, so Z=1Z = 1. Substituting back Z=x11Z = x_1 - 1, we get x11=1x_1 - 1 = 1, which means x1=2x_1 = 2.