Solveeit Logo

Question

Question: Let three vectors $\vec{a}$, $\vec{b}$ and $\vec{c}$ be such that. $\vec{a}\times\vec{b}=3(\vec{a}\t...

Let three vectors a\vec{a}, b\vec{b} and c\vec{c} be such that. a×b=3(a×c),a=1,b=1,c=13\vec{a}\times\vec{b}=3(\vec{a}\times\vec{c}), |\vec{a}|=1, |\vec{b}|=1, |\vec{c}|=\frac{1}{3}. If angle between b\vec{b} and c\vec{c} is π3\frac{\pi}{3}, then angle between a\vec{a} and c\vec{c} can be

A

cos1(35)\cos^{-1}(\frac{3}{5})

B

πcos1(35)\pi - \cos^{-1}(\frac{3}{5})

C

5π6\frac{5\pi}{6}

D

π3\frac{\pi}{3}

Answer

π3\frac{\pi}{3}

Explanation

Solution

The given vector equation is a×b=3(a×c)\vec{a}\times\vec{b}=3(\vec{a}\times\vec{c}). Rearranging this, we get a×b3a×c=0\vec{a}\times\vec{b} - 3\vec{a}\times\vec{c} = \vec{0}, which can be written as a×(b3c)=0\vec{a}\times(\vec{b}-3\vec{c}) = \vec{0}.

This implies that vector a\vec{a} is parallel to the vector (b3c)(\vec{b}-3\vec{c}). Let v=b3c\vec{v} = \vec{b}-3\vec{c}. Then av\vec{a} \parallel \vec{v}.

We calculate the magnitude of v\vec{v}: v2=b3c2=(b3c)(b3c)|\vec{v}|^2 = |\vec{b}-3\vec{c}|^2 = (\vec{b}-3\vec{c})\cdot(\vec{b}-3\vec{c}) v2=b23bc3cb+9c2|\vec{v}|^2 = |\vec{b}|^2 - 3\vec{b}\cdot\vec{c} - 3\vec{c}\cdot\vec{b} + 9|\vec{c}|^2 v2=b26(bc)+9c2|\vec{v}|^2 = |\vec{b}|^2 - 6(\vec{b}\cdot\vec{c}) + 9|\vec{c}|^2

We are given b=1|\vec{b}|=1, c=13|\vec{c}|=\frac{1}{3}, and the angle between b\vec{b} and c\vec{c} is π3\frac{\pi}{3}. So, bc=bccos(π3)=(1)(13)(12)=16\vec{b}\cdot\vec{c} = |\vec{b}||\vec{c}|\cos(\frac{\pi}{3}) = (1)(\frac{1}{3})(\frac{1}{2}) = \frac{1}{6}.

Substitute these values into the expression for v2|\vec{v}|^2: v2=(1)26(16)+9(13)2|\vec{v}|^2 = (1)^2 - 6(\frac{1}{6}) + 9(\frac{1}{3})^2 v2=11+9(19)=1|\vec{v}|^2 = 1 - 1 + 9(\frac{1}{9}) = 1 So, v=b3c=1|\vec{v}| = |\vec{b}-3\vec{c}| = 1.

Since a(b3c)\vec{a} \parallel (\vec{b}-3\vec{c}) and a=1|\vec{a}|=1 and b3c=1|\vec{b}-3\vec{c}|=1, there are two possibilities:

  1. a=b3c\vec{a} = \vec{b}-3\vec{c}
  2. a=(b3c)=3cb\vec{a} = -(\vec{b}-3\vec{c}) = 3\vec{c}-\vec{b}

Let θ\theta be the angle between a\vec{a} and c\vec{c}. We have ac=accosθ=(1)(13)cosθ=13cosθ\vec{a}\cdot\vec{c} = |\vec{a}||\vec{c}|\cos\theta = (1)(\frac{1}{3})\cos\theta = \frac{1}{3}\cos\theta.

Case 1: a=b3c\vec{a} = \vec{b}-3\vec{c} Take the dot product with c\vec{c}: ac=(b3c)c=bc3c2\vec{a}\cdot\vec{c} = (\vec{b}-3\vec{c})\cdot\vec{c} = \vec{b}\cdot\vec{c} - 3|\vec{c}|^2 13cosθ=163(13)2=163(19)=1613=16\frac{1}{3}\cos\theta = \frac{1}{6} - 3(\frac{1}{3})^2 = \frac{1}{6} - 3(\frac{1}{9}) = \frac{1}{6} - \frac{1}{3} = -\frac{1}{6} cosθ=36=12\cos\theta = -\frac{3}{6} = -\frac{1}{2} This gives θ=2π3\theta = \frac{2\pi}{3}. This angle is not present in the options.

Case 2: a=3cb\vec{a} = 3\vec{c}-\vec{b} Take the dot product with c\vec{c}: ac=(3cb)c=3c2bc\vec{a}\cdot\vec{c} = (3\vec{c}-\vec{b})\cdot\vec{c} = 3|\vec{c}|^2 - \vec{b}\cdot\vec{c} 13cosθ=3(13)216=3(19)16=1316=16\frac{1}{3}\cos\theta = 3(\frac{1}{3})^2 - \frac{1}{6} = 3(\frac{1}{9}) - \frac{1}{6} = \frac{1}{3} - \frac{1}{6} = \frac{1}{6} cosθ=36=12\cos\theta = \frac{3}{6} = \frac{1}{2} This gives θ=π3\theta = \frac{\pi}{3}.

We check consistency with the initial condition a×b=3a×c|\vec{a}\times\vec{b}|=3|\vec{a}\times\vec{c}|. absinθab=3acsinθac|\vec{a}||\vec{b}|\sin\theta_{ab} = 3|\vec{a}||\vec{c}|\sin\theta_{ac} 11sinθab=3113sinθac1 \cdot 1 \cdot \sin\theta_{ab} = 3 \cdot 1 \cdot \frac{1}{3} \cdot \sin\theta_{ac} sinθab=sinθac\sin\theta_{ab} = \sin\theta_{ac}

In Case 2, θac=π3\theta_{ac} = \frac{\pi}{3}, so sinθac=sin(π3)=32\sin\theta_{ac} = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}. We need to check if sinθab=32\sin\theta_{ab} = \frac{\sqrt{3}}{2}. From a=3cb\vec{a} = 3\vec{c}-\vec{b}, take the dot product with b\vec{b}: ab=(3cb)b=3cbb2\vec{a}\cdot\vec{b} = (3\vec{c}-\vec{b})\cdot\vec{b} = 3\vec{c}\cdot\vec{b} - |\vec{b}|^2 abcosθab=3bccos(π3)b2|\vec{a}||\vec{b}|\cos\theta_{ab} = 3|\vec{b}||\vec{c}|\cos(\frac{\pi}{3}) - |\vec{b}|^2 (1)(1)cosθab=3(1)(13)(12)(1)2=121=12(1)(1)\cos\theta_{ab} = 3(1)(\frac{1}{3})(\frac{1}{2}) - (1)^2 = \frac{1}{2} - 1 = -\frac{1}{2} cosθab=12\cos\theta_{ab} = -\frac{1}{2}. This implies θab=2π3\theta_{ab} = \frac{2\pi}{3}. Then sinθab=sin(2π3)=32\sin\theta_{ab} = \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}. This is consistent with sinθac=32\sin\theta_{ac} = \frac{\sqrt{3}}{2}. Thus, θac=π3\theta_{ac} = \frac{\pi}{3} is a valid solution.