Solveeit Logo

Question

Question: Let $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ be three vectors such that $...

Let a\overrightarrow{a}, b\overrightarrow{b} and c\overrightarrow{c} be three vectors such that [abc]=4[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]=4. If x=p(b×c)+q(c×a)+r(a×b)\overrightarrow{x}=p(\overrightarrow{b}\times\overrightarrow{c})+q(\overrightarrow{c}\times\overrightarrow{a})+r(\overrightarrow{a}\times\overrightarrow{b}) be perpendicular to a+b+c\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}, then the value of (pq)2+(qr)2+(rp)2p2+q2+r2\frac{(p-q)^2+(q-r)^2+(r-p)^2}{p^2+q^2+r^2} is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

Given three vectors a\overrightarrow{a}, b\overrightarrow{b}, and c\overrightarrow{c} with [abc]=4[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = 4. A vector x\overrightarrow{x} is defined as x=p(b×c)+q(c×a)+r(a×b)\overrightarrow{x}=p(\overrightarrow{b}\times\overrightarrow{c})+q(\overrightarrow{c}\times\overrightarrow{a})+r(\overrightarrow{a}\times\overrightarrow{b}). The condition that x\overrightarrow{x} is perpendicular to a+b+c\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} implies their dot product is zero: x(a+b+c)=0\overrightarrow{x} \cdot (\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}) = 0 Substituting the expression for x\overrightarrow{x}: (p(b×c)+q(c×a)+r(a×b))(a+b+c)=0(p(\overrightarrow{b}\times\overrightarrow{c})+q(\overrightarrow{c}\times\overrightarrow{a})+r(\overrightarrow{a}\times\overrightarrow{b})) \cdot (\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}) = 0 Expanding the dot product, and using the properties of the scalar triple product, specifically (u×v)w=[uvw](\vec{u} \times \vec{v}) \cdot \vec{w} = [\vec{u}\vec{v}\vec{w}] and that [uvw]=0[\vec{u}\vec{v}\vec{w}] = 0 if any two vectors are identical, the equation simplifies to: p[bca]+q[cab]+r[abc]=0p[\overrightarrow{b}\overrightarrow{c}\overrightarrow{a}] + q[\overrightarrow{c}\overrightarrow{a}\overrightarrow{b}] + r[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = 0 Using the cyclic property of the scalar triple product, [bca]=[cab]=[abc][\overrightarrow{b}\overrightarrow{c}\overrightarrow{a}] = [\overrightarrow{c}\overrightarrow{a}\overrightarrow{b}] = [\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]. Let K=[abc]=4K = [\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = 4. The equation becomes: pK+qK+rK=0pK + qK + rK = 0 K(p+q+r)=0K(p+q+r) = 0 Since K=40K=4 \neq 0, we must have p+q+r=0p+q+r = 0.

Now, we evaluate the expression (pq)2+(qr)2+(rp)2p2+q2+r2\frac{(p-q)^2+(q-r)^2+(r-p)^2}{p^2+q^2+r^2}. Expand the numerator: (pq)2+(qr)2+(rp)2=(p22pq+q2)+(q22qr+r2)+(r22rp+p2)=2(p2+q2+r2)2(pq+qr+rp)(p-q)^2+(q-r)^2+(r-p)^2 = (p^2-2pq+q^2) + (q^2-2qr+r^2) + (r^2-2rp+p^2) \\ = 2(p^2+q^2+r^2) - 2(pq+qr+rp) From the condition p+q+r=0p+q+r=0, squaring both sides gives: (p+q+r)2=02(p+q+r)^2 = 0^2 p2+q2+r2+2(pq+qr+rp)=0p^2+q^2+r^2 + 2(pq+qr+rp) = 0 2(pq+qr+rp)=(p2+q2+r2)2(pq+qr+rp) = -(p^2+q^2+r^2) Substitute this into the numerator: Numerator=2(p2+q2+r2)((p2+q2+r2))=2(p2+q2+r2)+(p2+q2+r2)=3(p2+q2+r2)\text{Numerator} = 2(p^2+q^2+r^2) - (-(p^2+q^2+r^2)) \\ = 2(p^2+q^2+r^2) + (p^2+q^2+r^2) \\ = 3(p^2+q^2+r^2) The expression becomes: 3(p2+q2+r2)p2+q2+r2\frac{3(p^2+q^2+r^2)}{p^2+q^2+r^2} Assuming p,q,rp, q, r are not all zero (which would make x=0\overrightarrow{x}=\overrightarrow{0} and the expression 00\frac{0}{0}), p2+q2+r20p^2+q^2+r^2 \neq 0. Therefore, we can cancel the term p2+q2+r2p^2+q^2+r^2: Value=3\text{Value} = 3