Question
Question: Let $Z_1, Z_2, Z_3$ and $Z_4$ be four complex numbers chosen independently from the set $S = \{1, -1...
Let Z1,Z2,Z3 and Z4 be four complex numbers chosen independently from the set S={1,−1,i,−i}. If Z=Z1+Z2+Z3+Z4. Then the probability that Z is a real number and ∣Z∣=2 is (where i=−1)

A
3/4
B
1/4
C
1/3
D
1/8
Answer
1/8
Explanation
Solution
Let n1,n−1,ni,n−i be the counts of 1,−1,i,−i respectively, such that n1+n−1+ni+n−i=4. The sum is Z=(n1−n−1)+i(ni−n−i). For Z to be real, ni=n−i. For ∣Z∣=2, we need ∣n1−n−1∣=2.
- If ni=n−i=0, then n1+n−1=4. ∣n1−n−1∣=2 yields (n1,n−1)=(3,1) or (1,3). Number of ways: (3,1,0,04)+(1,3,0,04)=4+4=8.
- If ni=n−i=1, then n1+n−1=2. ∣n1−n−1∣=2 yields (n1,n−1)=(2,0) or (0,2). Number of ways: (2,0,1,14)+(0,2,1,14)=12+12=24.
- If ni=n−i=2, then n1+n−1=0, so (n1,n−1)=(0,0). Sum is Z=0, so ∣Z∣=0=2. Number of ways = 0.
Total favorable ways = 8+24=32. Total possible ways = 44=256. Probability = 32/256=1/8.