Solveeit Logo

Question

Question: Let $Z_1, Z_2, Z_3$ and $Z_4$ be four complex numbers chosen independently from the set $S = \{1, -1...

Let Z1,Z2,Z3Z_1, Z_2, Z_3 and Z4Z_4 be four complex numbers chosen independently from the set S={1,1,i,i}S = \{1, -1, i, -i\}. If Z=Z1+Z2+Z3+Z4Z = Z_1 + Z_2 + Z_3 + Z_4. Then the probability that ZZ is a real number and Z=2|Z| = 2 is (where i=1i = \sqrt{-1})

A

3/4

B

1/4

C

1/3

D

1/8

Answer

1/8

Explanation

Solution

Let n1,n1,ni,nin_1, n_{-1}, n_i, n_{-i} be the counts of 1,1,i,i1, -1, i, -i respectively, such that n1+n1+ni+ni=4n_1+n_{-1}+n_i+n_{-i}=4. The sum is Z=(n1n1)+i(nini)Z = (n_1-n_{-1}) + i(n_i-n_{-i}). For ZZ to be real, ni=nin_i=n_{-i}. For Z=2|Z|=2, we need n1n1=2|n_1-n_{-1}|=2.

  1. If ni=ni=0n_i=n_{-i}=0, then n1+n1=4n_1+n_{-1}=4. n1n1=2|n_1-n_{-1}|=2 yields (n1,n1)=(3,1)(n_1,n_{-1})=(3,1) or (1,3)(1,3). Number of ways: (43,1,0,0)+(41,3,0,0)=4+4=8\binom{4}{3,1,0,0} + \binom{4}{1,3,0,0} = 4+4=8.
  2. If ni=ni=1n_i=n_{-i}=1, then n1+n1=2n_1+n_{-1}=2. n1n1=2|n_1-n_{-1}|=2 yields (n1,n1)=(2,0)(n_1,n_{-1})=(2,0) or (0,2)(0,2). Number of ways: (42,0,1,1)+(40,2,1,1)=12+12=24\binom{4}{2,0,1,1} + \binom{4}{0,2,1,1} = 12+12=24.
  3. If ni=ni=2n_i=n_{-i}=2, then n1+n1=0n_1+n_{-1}=0, so (n1,n1)=(0,0)(n_1,n_{-1})=(0,0). Sum is Z=0Z=0, so Z=02|Z|=0 \ne 2. Number of ways = 0.

Total favorable ways = 8+24=328+24=32. Total possible ways = 44=2564^4=256. Probability = 32/256=1/832/256 = 1/8.