Solveeit Logo

Question

Question: Let f(x) be a increasing function defined on (0, ∞), $f(2a^2 + a + 1) > f(3a^2 - 4a + 1)$, then the ...

Let f(x) be a increasing function defined on (0, ∞), f(2a2+a+1)>f(3a24a+1)f(2a^2 + a + 1) > f(3a^2 - 4a + 1), then the range of a is

A

a(,13)(1,)a \in (-\infty, \frac{1}{3}) \cup (1, \infty)

B

a(0,5)a \in (0, 5)

C

a(13,)a \in (\frac{1}{3}, \infty)

D

a(0,13)(1,5)a \in (0, \frac{1}{3}) \cup (1, 5)

Answer

a(0,13)(1,5)a \in (0, \frac{1}{3}) \cup (1, 5)

Explanation

Solution

Since f(x) is increasing, 2a2+a+1>3a24a+12a^2 + a + 1 > 3a^2 - 4a + 1, which simplifies to a25a<0a^2 - 5a < 0, or a(a5)<0a(a-5) < 0. This inequality holds for 0<a<50 < a < 5. Also, the arguments of f must be positive:

  1. 2a2+a+1>02a^2 + a + 1 > 0. This is always true as the discriminant is negative and the leading coefficient is positive.
  2. 3a24a+1>03a^2 - 4a + 1 > 0. The roots of 3a24a+1=03a^2 - 4a + 1 = 0 are a=1/3a = 1/3 and a=1a = 1. Since the parabola opens upwards, this inequality holds for a<1/3a < 1/3 or a>1a > 1. Combining 0<a<50 < a < 5 with (a<1/3a < 1/3 or a>1a > 1) gives the intersection (0,1/3)(1,5)(0, 1/3) \cup (1, 5).