Solveeit Logo

Question

Question: Let $P = \lim_{k \to \infty} \left[ \frac{e^{\frac{1}{k}}}{k^2} + \frac{2(e^{\frac{1}{k}})^2}{k^2} +...

Let P=limk[e1kk2+2(e1k)2k2+3(e1k)3k2+...+k(e1k)kk2]P = \lim_{k \to \infty} \left[ \frac{e^{\frac{1}{k}}}{k^2} + \frac{2(e^{\frac{1}{k}})^2}{k^2} + \frac{3(e^{\frac{1}{k}})^3}{k^2} + ... + \frac{k(e^{\frac{1}{k}})^k}{k^2} \right]. Then, the value of PPP...(2016)timesP^{P^{P... (2016) times}} is

A

1

B

2

C

3

D

4

Answer

1

Explanation

Solution

The limit can be rewritten as P=limk1k2n=1kn(e1k)nP = \lim_{k \to \infty} \frac{1}{k^2} \sum_{n=1}^{k} n \left(e^{\frac{1}{k}}\right)^n. This is a Riemann sum for the integral 01xexdx\int_{0}^{1} x e^x dx. Evaluating the integral using integration by parts: 01xexdx=[xex]0101exdx=(1e10)[ex]01=e(e1e0)=e(e1)=1\int_{0}^{1} x e^x dx = [x e^x]_{0}^{1} - \int_{0}^{1} e^x dx = (1 \cdot e^1 - 0) - [e^x]_{0}^{1} = e - (e^1 - e^0) = e - (e - 1) = 1. Thus, P=1P=1. The expression PPP...(2016)timesP^{P^{P... (2016) times}} becomes 111...(2016)times1^{1^{1^{... (2016) times}}}, which is equal to 1.