Question
Question: Let $\int \frac{dz}{(1+z^2)^4}=a\frac{z}{(1+z^2)^3}+b\frac{z}{(1+z^2)^2}+c\frac{z}{(1+z^2)}+ d\tan^{...
Let ∫(1+z2)4dz=a(1+z2)3z+b(1+z2)2z+c(1+z2)z+dtan−1x+K, where K is constant of integration. Then which of the following option(s) is/are correct?

c - d = 0
a + 4b = 1
a + 4b = 2
c + d = 0
A, B
Solution
To solve the integral ∫(1+z2)4dz, we can use a reduction formula for integrals of the form In=∫(1+z2)ndz.
The reduction formula is given by:
In=2(n−1)(1+z2)n−1z+2(n−1)2n−3In−1 for n≥2.
And I1=∫1+z2dz=tan−1z.
We need to find I4. We will apply the formula iteratively:
-
For n=2:
I2=2(2−1)(1+z2)2−1z+2(2−1)2(2)−3I1
I2=2(1)(1+z2)1z+2(1)1I1
I2=2(1+z2)z+21tan−1z -
For n=3:
I3=2(3−1)(1+z2)3−1z+2(3−1)2(3)−3I2
I3=4(1+z2)2z+43I2
Substitute I2:
I3=4(1+z2)2z+43(2(1+z2)z+21tan−1z)
I3=4(1+z2)2z+8(1+z2)3z+83tan−1z -
For n=4:
I4=2(4−1)(1+z2)4−1z+2(4−1)2(4)−3I3
I4=6(1+z2)3z+65I3
Substitute I3:
I4=6(1+z2)3z+65(4(1+z2)2z+8(1+z2)3z+83tan−1z)
I4=6(1+z2)3z+24(1+z2)25z+48(1+z2)15z+4815tan−1z
Simplify the coefficients:
I4=61(1+z2)3z+245(1+z2)2z+165(1+z2)z+165tan−1z+K
Comparing this with the given form:
∫(1+z2)4dz=a(1+z2)3z+b(1+z2)2z+c(1+z2)z+dtan−1x+K
(Assuming x in tan−1x is a typo and should be z)
We identify the coefficients:
a=61
b=245
c=165
d=165
Now we check the given options:
A. c - d = 0
c−d=165−165=0. This option is correct.
B. a + 4b = 1
a+4b=61+4(245)=61+2420=61+65=66=1. This option is correct.
C. a + 4b = 2
Since option B is correct, this option is incorrect.
D. c + d = 0
c+d=165+165=1610=85=0. This option is incorrect.
The correct options are A and B.