Solveeit Logo

Question

Question: Three lines represented by the equations $a_1x+b_1y+c_1=0$, $a_2x+b_2y+c_2=0$ and $a_3x+b_3y+c_3=0$ ...

Three lines represented by the equations a1x+b1y+c1=0a_1x+b_1y+c_1=0, a2x+b2y+c2=0a_2x+b_2y+c_2=0 and a3x+b3y+c3=0a_3x+b_3y+c_3=0 are concurrent if;

A

a1(b2c3b3c2)+a2(b3c1b1c3)+a3(b1c2b2c1)=0a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1)=0

B

a1b2c3+a2b3c1+a3b1c2=0a_1b_2c_3+a_2b_3c_1+a_3b_1c_2=0

C

a1a3=b1b3=c1c2\frac{a_1}{a_3}=\frac{b_1}{b_3}=\frac{c_1}{c_2}

D

a1b2a2b1=0a_1b_2-a_2b_1=0

Answer

a1(b2c3b3c2)+a2(b3c1b1c3)+a3(b1c2b2c1)=0a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1)=0

Explanation

Solution

For three lines given by the equations:

  1. a1x+b1y+c1=0a_1x+b_1y+c_1=0
  2. a2x+b2y+c2=0a_2x+b_2y+c_2=0
  3. a3x+b3y+c3=0a_3x+b_3y+c_3=0

to be concurrent (i.e., intersect at a single common point), the determinant of their coefficients must be zero.

The condition is:

a1b1c1a2b2c2a3b3c3=0\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0

Expanding this determinant along the first column:

a1b2c2b3c3a2b1c1b3c3+a3b1c1b2c2=0a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & c_1 \\ b_3 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} = 0

Calculating the 2×22 \times 2 determinants:

a1(b2c3b3c2)a2(b1c3b3c1)+a3(b1c2b2c1)=0a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1) = 0

Rearranging the second term:

a1(b2c3b3c2)+a2(b3c1b1c3)+a3(b1c2b2c1)=0a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1) = 0

This matches the first option.