Solveeit Logo

Question

Question: Find the electron gain enthalpy of iodine with the help of the following data: Heat of formation of ...

Find the electron gain enthalpy of iodine with the help of the following data: Heat of formation of NaI = -287.9 kJ/mol Heat of Sublimation of Na = 108.4 kJ/mol Ionisation energy of Na = 106.7 kJ/mol Heat of atomisation of iodine = 495.4 kJ/mol Lattice energy of NaI = -692 kJ/mol

A

-306.4 kJ/mol

B

-204.9 kJ/mol

C

-406.4 kJ/mol

D

-300 kJ/mol

Answer

-306.4 kJ/mol

Explanation

Solution

The problem can be solved using the Born-Haber cycle, which relates the enthalpy of formation of an ionic compound to various energy terms. The cycle for the formation of NaI is as follows: Na(s)+12I2(s)NaI(s)Na(s) + \frac{1}{2} I_2(s) \rightarrow NaI(s) ; ΔHf=287.9\Delta H_f = -287.9 kJ/mol

The individual steps in the Born-Haber cycle are:

  1. Sublimation of Sodium: Na(s)Na(g)Na(s) \rightarrow Na(g) ; ΔHsub=+108.4\Delta H_{sub} = +108.4 kJ/mol
  2. Ionisation of Sodium: Na(g)Na+(g)+eNa(g) \rightarrow Na^+(g) + e^- ; ΔHIE=+106.7\Delta H_{IE} = +106.7 kJ/mol
  3. Atomisation of Iodine: 12I2(s)I(g)\frac{1}{2} I_2(s) \rightarrow I(g) ; ΔHatom_I=495.4\Delta H_{atom\_I} = 495.4 kJ/mol
  4. Electron Gain by Iodine: I(g)+eI(g)I(g) + e^- \rightarrow I^-(g) ; ΔHelectron gain\Delta H_{electron\ gain} (This is what we need to find)
  5. Lattice Formation: Na+(g)+I(g)NaI(s)Na^+(g) + I^-(g) \rightarrow NaI(s) ; ΔHlattice=692\Delta H_{lattice} = -692 kJ/mol

According to Hess's Law, the sum of the enthalpy changes of these steps equals the enthalpy of formation of NaI: ΔHf=ΔHsub+ΔHIE+ΔHatom_I+ΔHelectron gain+ΔHlattice\Delta H_f = \Delta H_{sub} + \Delta H_{IE} + \Delta H_{atom\_I} + \Delta H_{electron\ gain} + \Delta H_{lattice}

Substituting the given values into the equation: 287.9=108.4+106.7+495.4+ΔHelectron gain+(692)-287.9 = 108.4 + 106.7 + 495.4 + \Delta H_{electron\ gain} + (-692)

Rearranging to solve for ΔHelectron gain\Delta H_{electron\ gain}: ΔHelectron gain=ΔHfΔHsubΔHIEΔHatom_IΔHlattice\Delta H_{electron\ gain} = \Delta H_f - \Delta H_{sub} - \Delta H_{IE} - \Delta H_{atom\_I} - \Delta H_{lattice} ΔHelectron gain=(287.9)(108.4)(106.7)(495.4)(692)\Delta H_{electron\ gain} = (-287.9) - (108.4) - (106.7) - (495.4) - (-692) ΔHelectron gain=287.9108.4106.7495.4+692\Delta H_{electron\ gain} = -287.9 - 108.4 - 106.7 - 495.4 + 692 ΔHelectron gain=998.4+692\Delta H_{electron\ gain} = -998.4 + 692 ΔHelectron gain=306.4\Delta H_{electron\ gain} = -306.4 kJ/mol