Solveeit Logo

Question

Question: Let a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -1) and S be the region consisting o...

Let a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -1) and S be the region consisting of all points inside the square which are nearer to the origin than to any edge. If the area enclosed by region S is 43(a2b)\frac{4}{3}(a\sqrt{2}-b) then the value of a and b is equal to: (a,bN)(a, b \in N)

A

(4,5)

B

(5,4)

C

(1,2)

D

(2,1)

Answer

(4, 5)

Explanation

Solution

We are given a square with vertices

(1,1),  (1,1),  (1,1),  (1,1)(1,1),\;(-1,1),\;(-1,-1),\;(1,-1)

and we define the region SS as the set of points inside the square which are closer to the origin than to any edge. By symmetry it is enough to consider the first quadrant (i.e. x0,  y0x\ge0,\; y \ge0) and then multiply the computed area by 4.

A point (x,y)(x,y) in the first quadrant satisfies:

  • Its distance from the origin is r=x2+y2r=\sqrt{x^2+y^2}.
  • Its distances from the edges x=1x=1 and y=1y=1 are 1x1-x and 1y1-y respectively.

Thus, in the first quadrant the condition becomes

x2+y2<min(1x,1y).\sqrt{x^2+y^2} < \min(1-x,\,1-y).

It is natural to switch to polar coordinates:

x=rcosθ,y=rsinθ,0θπ2,  0r.x=r\cos\theta,\quad y=r\sin\theta,\quad 0\le\theta\le\frac{\pi}{2},\; 0\le r.

The distances from the edges become:

1x=1rcosθand1y=1rsinθ.1-x=1-r\cos\theta\quad \text{and}\quad 1-y=1-r\sin\theta.

For each θ\theta we require:

r<1rcosθandr<1rsinθ.r < 1-r\cos\theta \quad \text{and}\quad r < 1-r\sin\theta.

Solving these:

r(1+cosθ)<1r<11+cosθ,r(1+\cos\theta)<1 \quad\Longrightarrow\quad r< \frac{1}{1+\cos\theta}, r(1+sinθ)<1r<11+sinθ.r(1+\sin\theta)<1 \quad\Longrightarrow\quad r< \frac{1}{1+\sin\theta}.

Thus for a fixed angle θ\theta, the allowed rr runs from 00 to

rmax(θ)=min(11+cosθ,11+sinθ).r_{\max}(\theta)=\min\Bigl(\frac{1}{1+\cos\theta},\,\frac{1}{1+\sin\theta}\Bigr).

Notice when θ=45\theta=45^\circ, cosθ=sinθ\cos\theta=\sin\theta and the two expressions are equal. Therefore, we split the integral into two parts:

  1. For θ\theta from 0 to π/4\pi/4, we have cosθsinθ\cos\theta\ge\sin\theta so that 11+cosθ11+sinθ\frac{1}{1+\cos\theta}\le\frac{1}{1+\sin\theta}. Thus: I1=0π/4011+cosθrdrdθ.I_1=\int_{0}^{\pi/4}\int_{0}^{\frac{1}{1+\cos\theta}} r\,dr\,d\theta.
  2. For θ\theta from π/4\pi/4 to π/2\pi/2, we have sinθcosθ\sin\theta\ge\cos\theta so that rmax(θ)=11+sinθr_{\max}(\theta)=\frac{1}{1+\sin\theta}: I2=π/4π/2011+sinθrdrdθ.I_2=\int_{\pi/4}^{\pi/2}\int_{0}^{\frac{1}{1+\sin\theta}} r\,dr\,d\theta.

The area in the first quadrant, A1A_1, is:

A1=0π/4121(1+cosθ)2dθ+π/4π/2121(1+sinθ)2dθ.A_1= \int_{0}^{\pi/4}\frac{1}{2}\frac{1}{(1+\cos\theta)^2}\,d\theta +\int_{\pi/4}^{\pi/2}\frac{1}{2}\frac{1}{(1+\sin\theta)^2}\,d\theta.

By making a substitution in the second integral, ϕ=π2θ\phi=\frac{\pi}{2}-\theta, it turns out that both integrals become identical. Thus,

A1=0π/41(1+cosθ)2dθ.A_1= \int_{0}^{\pi/4}\frac{1}{(1+\cos\theta)^2}\,d\theta.

Multiplying by the factor 12\frac{1}{2} from the rr-integration, we denote:

I1=120π/4dθ(1+cosθ)2.I_1=\frac{1}{2}\int_{0}^{\pi/4}\frac{d\theta}{(1+\cos\theta)^2}.

Evaluating I1I_1:

Recall that

1+cosθ=2cos2(θ2).1+\cos\theta = 2\cos^2\left(\frac{\theta}{2}\right).

Then,

(1+cosθ)2=4cos4(θ2).(1+\cos\theta)^2=4\cos^4\left(\frac{\theta}{2}\right).

Thus,

I1=120π/4dθ4cos4(θ/2)=180π/4sec4(θ2)dθ.I_1=\frac{1}{2}\int_{0}^{\pi/4}\frac{d\theta}{4\cos^4(\theta/2)} =\frac{1}{8}\int_{0}^{\pi/4}\sec^4\left(\frac{\theta}{2}\right)d\theta.

Let u=θ2 u=\frac{\theta}{2} so that dθ=2dud\theta=2du and when θ=0,  u=0\theta=0,\; u=0; when θ=π/4,  u=π/8\theta=\pi/4,\; u=\pi/8. Then,

I1=1820π/8sec4udu=140π/8sec4udu.I_1=\frac{1}{8}\cdot 2\int_{0}^{\pi/8}\sec^4 u\,du =\frac{1}{4}\int_{0}^{\pi/8}\sec^4 u\,du.

The antiderivative is:

sec4udu=tanu+13tan3u+C.\int\sec^4u\,du = \tan u +\frac{1}{3}\tan^3u + C.

Thus,

I1=14[tanu+13tan3u]0π/8=14[tan(π8)+13tan3(π8)].I_1=\frac{1}{4}\left[\tan u+\frac{1}{3}\tan^3u\right]_{0}^{\pi/8} =\frac{1}{4}\left[\tan\left(\frac{\pi}{8}\right)+\frac{1}{3}\tan^3\left(\frac{\pi}{8}\right)\right].

The area in the first quadrant is then:

A1=2I1=12[tan(π8)+13tan3(π8)],A_1=2I_1=\frac{1}{2}\left[\tan\left(\frac{\pi}{8}\right)+\frac{1}{3}\tan^3\left(\frac{\pi}{8}\right)\right],

and because the full region is symmetric in four quadrants:

Area S=4A1=2[tan(π8)+13tan3(π8)].\text{Area }S=4A_1 = 2\left[\tan\left(\frac{\pi}{8}\right)+\frac{1}{3}\tan^3\left(\frac{\pi}{8}\right)\right].

Using the Known Value: It is known that

tan(π8)=21.\tan\left(\frac{\pi}{8}\right)=\sqrt{2}-1.

Then,

tan3(π8)=(21)3.\tan^3\left(\frac{\pi}{8}\right)=(\sqrt{2}-1)^3.

Expanding (21)3(\sqrt{2}-1)^3:

(21)3=(2)33(2)2(1)+321213=226+321=527.(\sqrt{2}-1)^3 = (\sqrt{2})^3 - 3(\sqrt{2})^2(1) + 3\sqrt{2}\cdot1^2 - 1^3 = 2\sqrt{2}-6+3\sqrt{2}-1= 5\sqrt{2}-7.

Plug these back in:

S=2[(21)+13(527)]=2[21+5273].S=2\left[(\sqrt{2}-1)+\frac{1}{3}(5\sqrt{2}-7)\right] =2\left[\sqrt{2}-1+\frac{5\sqrt{2}-7}{3}\right].

Write the expression with common denominator:

S=23(21)+(527)3=23[323+527]=23[8210]=162203.S=2\cdot\frac{3(\sqrt{2}-1)+(5\sqrt{2}-7)}{3} =\frac{2}{3}\left[3\sqrt{2}-3+5\sqrt{2}-7\right] =\frac{2}{3}\left[8\sqrt{2}-10\right] =\frac{16\sqrt{2}-20}{3}.

We can factor this as:

S=43(425).S=\frac{4}{3}\left(4\sqrt{2}-5\right).

Thus, comparing with the given form 43(a2b)\frac{4}{3}(a\sqrt2-b), we have:

a=4,b=5.a=4,\quad b=5.