Question
Question: If $\int \frac{dx}{x^{2025}+x} = \frac{1}{a}ln(\frac{x^b}{1+x^c})+C$, where $a, b, c \in N$ and need...
If ∫x2025+xdx=a1ln(1+xcxb)+C, where a,b,c∈N and need not to be distinct, then the value of a+b−c is

A
6021
B
2024
C
-2024
D
Zero
Answer
2024
Explanation
Solution
The integral is ∫x2025+xdx. We rewrite the integrand as x(x2024+1)1. Let u=x2024. Then du=2024x2023dx. Rewrite the integral as ∫x2024(x2024+1)x2023dx=20241∫u(u+1)du. Using partial fractions, u(u+1)1=u1−u+11. The integral becomes 20241∫(u1−u+11)du=20241(ln∣u∣−ln∣u+1∣)+C=20241ln∣u+1u∣+C. Substituting back u=x2024, we get 20241ln(x2024+1x2024)+C. Comparing with a1ln(1+xcxb)+C, we have a=2024,b=2024,c=2024. Therefore, a+b−c=2024+2024−2024=2024.
