Solveeit Logo

Question

Question: If $\int \frac{dx}{x^{2025}+x} = \frac{1}{a}ln(\frac{x^b}{1+x^c})+C$, where $a, b, c \in N$ and need...

If dxx2025+x=1aln(xb1+xc)+C\int \frac{dx}{x^{2025}+x} = \frac{1}{a}ln(\frac{x^b}{1+x^c})+C, where a,b,cNa, b, c \in N and need not to be distinct, then the value of a+bca+b-c is

A

6021

B

2024

C

-2024

D

Zero

Answer

2024

Explanation

Solution

The integral is dxx2025+x\int \frac{dx}{x^{2025}+x}. We rewrite the integrand as 1x(x2024+1)\frac{1}{x(x^{2024}+1)}. Let u=x2024u = x^{2024}. Then du=2024x2023dxdu = 2024x^{2023}dx. Rewrite the integral as x2023dxx2024(x2024+1)=12024duu(u+1)\int \frac{x^{2023}dx}{x^{2024}(x^{2024}+1)} = \frac{1}{2024} \int \frac{du}{u(u+1)}. Using partial fractions, 1u(u+1)=1u1u+1\frac{1}{u(u+1)} = \frac{1}{u} - \frac{1}{u+1}. The integral becomes 12024(1u1u+1)du=12024(lnulnu+1)+C=12024lnuu+1+C\frac{1}{2024} \int (\frac{1}{u} - \frac{1}{u+1})du = \frac{1}{2024} (\ln|u| - \ln|u+1|) + C = \frac{1}{2024} \ln|\frac{u}{u+1}| + C. Substituting back u=x2024u=x^{2024}, we get 12024ln(x2024x2024+1)+C\frac{1}{2024} \ln(\frac{x^{2024}}{x^{2024}+1}) + C. Comparing with 1aln(xb1+xc)+C\frac{1}{a}ln(\frac{x^b}{1+x^c})+C, we have a=2024,b=2024,c=2024a=2024, b=2024, c=2024. Therefore, a+bc=2024+20242024=2024a+b-c = 2024+2024-2024 = 2024.