Solveeit Logo

Question

Question: A ray is incident on an equilateral prism. The refractive index of the material of the prism is $\sq...

A ray is incident on an equilateral prism. The refractive index of the material of the prism is 73\sqrt{\frac{7}{3}}. Find the maximum deviation considering no total internal reflection in the prism

Answer

60 degrees

Explanation

Solution

To find the maximum deviation, we need to consider the extreme possible angles of incidence for which the ray can emerge from the prism without undergoing total internal reflection (TIR).

  1. Prism Angle (A): For an equilateral prism, A=60A = 60^\circ.

  2. Refractive Index (μ\mu): Given μ=73\mu = \sqrt{\frac{7}{3}}.

  3. Critical Angle (C): The critical angle for the prism-air interface is given by sinC=1μ\sin C = \frac{1}{\mu}. sinC=17/3=37\sin C = \frac{1}{\sqrt{7/3}} = \sqrt{\frac{3}{7}}. C=arcsin(37)C = \arcsin\left(\sqrt{\frac{3}{7}}\right). Numerically, 370.428570.6547\sqrt{\frac{3}{7}} \approx \sqrt{0.42857} \approx 0.6547. Since sin30=0.5\sin 30^\circ = 0.5 and sin45=0.707\sin 45^\circ = 0.707, CC is between 3030^\circ and 4545^\circ. C40.89C \approx 40.89^\circ.

  4. Condition for No Total Internal Reflection: For the ray to emerge from the second face, the angle of incidence inside the prism at the second face (r2r_2) must be less than or equal to the critical angle CC. So, r2Cr_2 \le C.

  5. Prism Geometry and Snell's Law:

    • A=r1+r2A = r_1 + r_2 (where r1r_1 and r2r_2 are angles of refraction inside the prism at the first and second faces, respectively).
    • sini1=μsinr1\sin i_1 = \mu \sin r_1 (at the first face).
    • μsinr2=sini2\mu \sin r_2 = \sin i_2 (at the second face).
    • Deviation δ=(i1+i2)A\delta = (i_1 + i_2) - A.
  6. Maximizing Deviation: The deviation δ\delta is maximum when the angles of incidence (i1i_1) and emergence (i2i_2) are at their extreme possible values. These extremes are usually 00^\circ or 9090^\circ. The deviation function δ(i1)\delta(i_1) has a minimum and increases as i1i_1 moves away from the minimum deviation condition. Thus, the maximum deviation occurs at the boundaries of the allowed range of i1i_1.

    The allowed range of i1i_1 is determined by two conditions:

    • 0i1900^\circ \le i_1 \le 90^\circ.
    • The ray must emerge from the second face (i.e., r2Cr_2 \le C).

    From A=r1+r2A = r_1 + r_2, we have r2=Ar1r_2 = A - r_1. So, the condition r2Cr_2 \le C becomes Ar1CA - r_1 \le C, which implies r1ACr_1 \ge A - C. Also, r1Cr_1 \le C (since i190    sinr1=sini1μ1μ=sinC    r1Ci_1 \le 90^\circ \implies \sin r_1 = \frac{\sin i_1}{\mu} \le \frac{1}{\mu} = \sin C \implies r_1 \le C). So, r1r_1 must be in the range [AC,C][A-C, C]. This implies i1i_1 must be in the range [arcsin(μsin(AC)),arcsin(μsinC)][\arcsin(\mu \sin(A-C)), \arcsin(\mu \sin C)]. Let's evaluate the boundaries:

    • Upper boundary for i1i_1: μsinC=μ1μ=1\mu \sin C = \mu \cdot \frac{1}{\mu} = 1. So, arcsin(1)=90\arcsin(1) = 90^\circ. This means i1=90i_1 = 90^\circ is a possible angle of incidence.
    • Lower boundary for i1i_1 (for emergence): We need to calculate μsin(AC)\mu \sin(A-C). sin(AC)=sin(60C)=sin60cosCcos60sinC\sin(A-C) = \sin(60^\circ - C) = \sin 60^\circ \cos C - \cos 60^\circ \sin C. We know sinC=1μ\sin C = \frac{1}{\mu} and cosC=1sin2C=11μ2=μ21μ\cos C = \sqrt{1 - \sin^2 C} = \sqrt{1 - \frac{1}{\mu^2}} = \frac{\sqrt{\mu^2-1}}{\mu}. sin(AC)=32μ21μ121μ=12μ(3μ211)\sin(A-C) = \frac{\sqrt{3}}{2} \frac{\sqrt{\mu^2-1}}{\mu} - \frac{1}{2} \frac{1}{\mu} = \frac{1}{2\mu} (\sqrt{3}\sqrt{\mu^2-1} - 1). Substitute μ=7/3\mu = \sqrt{7/3}: μ2=7/3    μ21=7/31=4/3\mu^2 = 7/3 \implies \mu^2 - 1 = 7/3 - 1 = 4/3. μ21=4/3=23\sqrt{\mu^2-1} = \sqrt{4/3} = \frac{2}{\sqrt{3}}. sin(AC)=127/3(3231)=327(21)=327\sin(A-C) = \frac{1}{2\sqrt{7/3}} \left(\sqrt{3} \cdot \frac{2}{\sqrt{3}} - 1\right) = \frac{\sqrt{3}}{2\sqrt{7}} (2 - 1) = \frac{\sqrt{3}}{2\sqrt{7}}. Now, calculate μsin(AC)=73327=12\mu \sin(A-C) = \sqrt{\frac{7}{3}} \cdot \frac{\sqrt{3}}{2\sqrt{7}} = \frac{1}{2}. So, the minimum angle of incidence for emergence is arcsin(1/2)=30\arcsin(1/2) = 30^\circ.

    Thus, the ray can emerge for i1i_1 in the range [30,90][30^\circ, 90^\circ]. The maximum deviation will occur at either i1=30i_1 = 30^\circ or i1=90i_1 = 90^\circ.

  7. Calculate Deviation for Extreme Cases:

    • Case 1: i1=90i_1 = 90^\circ (grazing incidence) Using sini1=μsinr1\sin i_1 = \mu \sin r_1: sin90=7/3sinr1    1=7/3sinr1    sinr1=3/7\sin 90^\circ = \sqrt{7/3} \sin r_1 \implies 1 = \sqrt{7/3} \sin r_1 \implies \sin r_1 = \sqrt{3/7}. So, r1=C40.89r_1 = C \approx 40.89^\circ. Now find r2r_2: r2=Ar1=60C=6040.89=19.11r_2 = A - r_1 = 60^\circ - C = 60^\circ - 40.89^\circ = 19.11^\circ. Since r2=19.11<C40.89r_2 = 19.11^\circ < C \approx 40.89^\circ, there is no TIR. Now find i2i_2 using μsinr2=sini2\mu \sin r_2 = \sin i_2: sini2=7/3sin(60C)=7/312=12\sin i_2 = \sqrt{7/3} \sin(60^\circ - C) = \sqrt{7/3} \cdot \frac{1}{2} = \frac{1}{2}. So, i2=30i_2 = 30^\circ. Deviation δ=i1+i2A=90+3060=12060=60\delta = i_1 + i_2 - A = 90^\circ + 30^\circ - 60^\circ = 120^\circ - 60^\circ = 60^\circ.

    • Case 2: i1=30i_1 = 30^\circ (minimum incidence for emergence) This case is symmetric to Case 1. If i1=30i_1 = 30^\circ, then r1=ACr_1 = A-C. This implies r2=Ar1=A(AC)=Cr_2 = A - r_1 = A - (A-C) = C. If r2=Cr_2 = C, then sini2=μsinC=μ1μ=1\sin i_2 = \mu \sin C = \mu \cdot \frac{1}{\mu} = 1. So, i2=90i_2 = 90^\circ (grazing emergence). Deviation δ=i1+i2A=30+9060=12060=60\delta = i_1 + i_2 - A = 30^\circ + 90^\circ - 60^\circ = 120^\circ - 60^\circ = 60^\circ.

Both extreme cases yield the same maximum deviation.