Solveeit Logo

Question

Question: The lines $L_1: \frac{x-1}{3} = \frac{y}{0} = \frac{z-3}{-1}$ and $L_2: \frac{x-2}{1} = \frac{y}{2} ...

The lines L1:x13=y0=z31L_1: \frac{x-1}{3} = \frac{y}{0} = \frac{z-3}{-1} and L2:x21=y2=z831L_2: \frac{x-2}{1} = \frac{y}{2} = \frac{z-\frac{8}{3}}{-1} lies in plane Ω\Omega. If Ω\Omega passes through (0, 3, 1), then line x1=1y=3z1x - 1 = 1 - y = 3z - 1 cuts the plane Ω\Omega at (α,β,γ)(\alpha, \beta, \gamma). The value of 2α+β+γ2\alpha + \beta + \gamma is equal to

A

223\frac{22}{3}

B

133\frac{13}{3}

C

253\frac{25}{3}

D

293\frac{29}{3}

Answer

223\frac{22}{3}

Explanation

Solution

  1. Plane Determination: The direction vectors of L1L_1 (v1=3,0,1\vec{v_1} = \langle 3, 0, -1 \rangle) and L2L_2 (v2=1,2,1\vec{v_2} = \langle 1, 2, -1 \rangle) are parallel to the plane Ω\Omega. Their cross product v1×v2=2,2,6\vec{v_1} \times \vec{v_2} = \langle 2, 2, 6 \rangle, which simplifies to 1,1,3\langle 1, 1, 3 \rangle, gives the normal vector to Ω\Omega. The plane Ω\Omega passes through the point (0,3,1)(0, 3, 1). Using the point-normal form of a plane equation a(xx0)+b(yy0)+c(zz0)=0a(x-x_0) + b(y-y_0) + c(z-z_0) = 0, we get 1(x0)+1(y3)+3(z1)=01(x-0) + 1(y-3) + 3(z-1) = 0, which simplifies to x+y+3z=6x + y + 3z = 6.

  2. Line Parameterization: The third line x1=1y=3z1x - 1 = 1 - y = 3z - 1 is parameterized. Setting t=x1=1y=3z1t = x-1 = 1-y = 3z-1, we get the parametric equations: x=1+tx = 1+t, y=1ty = 1-t, z=1+t3z = \frac{1+t}{3}.

  3. Intersection Point: The intersection of the parameterized line with plane Ω\Omega is found by substituting the parametric equations into the plane equation: (1+t)+(1t)+3(1+t3)=6(1+t) + (1-t) + 3(\frac{1+t}{3}) = 6. Solving for tt yields t=3t=3.

  4. Coordinates of Intersection: Substituting t=3t=3 back into the parametric equations gives the intersection point (α,β,γ)=(1+3,13,1+33)=(4,2,43)(\alpha, \beta, \gamma) = (1+3, 1-3, \frac{1+3}{3}) = (4, -2, \frac{4}{3}).

  5. Final Calculation: The required value is 2α+β+γ=2(4)+(2)+43=82+43=6+43=183+43=2232\alpha + \beta + \gamma = 2(4) + (-2) + \frac{4}{3} = 8 - 2 + \frac{4}{3} = 6 + \frac{4}{3} = \frac{18}{3} + \frac{4}{3} = \frac{22}{3}.