Solveeit Logo

Question

Question: The charge on each of the capacitors 0.16 ms after the switch S is closed in figure is : ...

The charge on each of the capacitors 0.16 ms after the switch S is closed in figure is :

A

24 μ\muC

B

26.8 μ\muC

C

25.2 μ\muC

D

40 μ\muC

Answer

25.2 μ\muC

Explanation

Solution

To find the charge on each capacitor after 0.16 ms, we follow these steps:

  1. Calculate Equivalent Capacitance (CeqC_{eq}): The two capacitors, C1=4.0μFC_1 = 4.0 \, \mu F and C2=4.0μFC_2 = 4.0 \, \mu F, are connected in parallel. Ceq=C1+C2=4.0μF+4.0μF=8.0μF=8.0×106FC_{eq} = C_1 + C_2 = 4.0 \, \mu F + 4.0 \, \mu F = 8.0 \, \mu F = 8.0 \times 10^{-6} \, F

  2. Calculate Maximum Charge (QmaxQ_{max}): The maximum charge stored on the equivalent capacitor is: Qmax=Ceq×V=(8.0×106F)×(10.0V)=80×106C=80μCQ_{max} = C_{eq} \times V = (8.0 \times 10^{-6} \, F) \times (10.0 \, V) = 80 \times 10^{-6} \, C = 80 \, \mu C

  3. Calculate Time Constant (τ\tau): The time constant for an RC circuit is given by: τ=R×Ceq\tau = R \times C_{eq} Given Resistance R=20ΩR = 20 \, \Omega. τ=(20Ω)×(8.0×106F)=160×106s=0.16×103s=0.16ms\tau = (20 \, \Omega) \times (8.0 \times 10^{-6} \, F) = 160 \times 10^{-6} \, s = 0.16 \times 10^{-3} \, s = 0.16 \, ms

  4. Calculate Charge on Equivalent Capacitor at time t: Q(t)=Qmax(1et/τ)Q(t) = Q_{max} (1 - e^{-t/\tau}) Given time t=0.16mst = 0.16 \, ms. Since t=τ=0.16mst = \tau = 0.16 \, ms, the ratio t/τ=1t/\tau = 1. Q(t)=80μC(1e1)Q(t) = 80 \, \mu C (1 - e^{-1}) Using the value e10.36788e^{-1} \approx 0.36788: Q(t)=80μC(10.36788)Q(t) = 80 \, \mu C (1 - 0.36788) Q(t)=80μC(0.63212)Q(t) = 80 \, \mu C (0.63212) Q(t)=50.5696μCQ(t) = 50.5696 \, \mu C

  5. Calculate Charge on Each Capacitor: Charge on each capacitor = Q(t)2=50.5696μC2=25.2848μC25.3μC\frac{Q(t)}{2} = \frac{50.5696 \, \mu C}{2} = 25.2848 \, \mu C \approx 25.3 \, \mu C

Therefore, the charge on each capacitor is approximately 25.3μC25.3 \, \mu C, which is closest to option C: 25.2μC25.2 \, \mu C.