Solveeit Logo

Question

Question: The set of the values of the parameter 'a' for which the function $f(x) = 6ax - a\sin4x - 6x - \sin6...

The set of the values of the parameter 'a' for which the function f(x)=6axasin4x6xsin6xf(x) = 6ax - a\sin4x - 6x - \sin6x increases xR\forall x \in R and has no critical points is

A

[-1, 1]

B

(-\infty, -6)

C

(-\infty, -6]

D

(6, \infty)

Answer

(6, \infty)

Explanation

Solution

For the function f(x)f(x) to increase xR\forall x \in R and have no critical points, its derivative f(x)f'(x) must be strictly positive for all xRx \in R, i.e., f(x)>0f'(x) > 0.

The derivative of f(x)f(x) is: f(x)=ddx(6axasin4x6xsin6x)f'(x) = \frac{d}{dx}(6ax - a\sin4x - 6x - \sin6x) f(x)=6a4acos4x66cos6xf'(x) = 6a - 4a\cos4x - 6 - 6\cos6x f(x)=(6a6)4acos4x6cos6xf'(x) = (6a - 6) - 4a\cos4x - 6\cos6x

We require f(x)>0f'(x) > 0, so: (6a6)4acos4x6cos6x>0(6a - 6) - 4a\cos4x - 6\cos6x > 0 6a6>4acos4x+6cos6x6a - 6 > 4a\cos4x + 6\cos6x

This inequality must hold for all xRx \in R. Thus, 6a66a - 6 must be greater than the maximum value of the expression 4acos4x+6cos6x4a\cos4x + 6\cos6x.

Let M=maxxR(4acos4x+6cos6x)M = \max_{x \in R} (4a\cos4x + 6\cos6x). The condition becomes 6a6>M6a - 6 > M.

Case 1: a>0a > 0. To maximize 4acos4x+6cos6x4a\cos4x + 6\cos6x, we can choose xx such that cos4x=1\cos4x = 1 and cos6x=1\cos6x = 1. This is possible when xx is a multiple of π\pi. For example, at x=πx = \pi, cos(4π)=1\cos(4\pi) = 1 and cos(6π)=1\cos(6\pi) = 1. So, M=4a(1)+6(1)=4a+6M = 4a(1) + 6(1) = 4a + 6. The condition 6a6>M6a - 6 > M becomes: 6a6>4a+66a - 6 > 4a + 6 2a>122a > 12 a>6a > 6.

Case 2: a<0a < 0. Let a=ba = -b where b>0b > 0. The expression becomes 4bcos4x+6cos6x-4b\cos4x + 6\cos6x. To find the minimum value, we consider the extreme values of cos4x\cos4x and cos6x\cos6x. The minimum value of 4bcos4x-4b\cos4x is 4b(1)=4b-4b(-1) = 4b. The minimum value of 6cos6x6\cos6x is 6(1)=66(-1) = -6. However, these minimums may not occur at the same xx. Let's consider f(x)=(6a6)(4acos4x+6cos6x)f'(x) = (6a-6) - (4a\cos4x + 6\cos6x). If a<0a < 0, then 6a6<66a-6 < -6. The term 4acos4x4a\cos4x is negative or zero. The term 6cos6x6\cos6x ranges from -6 to 6. Consider x=πx = \pi. f(π)=(6a6)4a(1)6(1)=6a64a6=2a12f'(\pi) = (6a-6) - 4a(1) - 6(1) = 6a - 6 - 4a - 6 = 2a - 12. Since a<0a < 0, 2a<02a < 0, so 2a12<122a - 12 < -12. This means f(π)<0f'(\pi) < 0. Thus, for a<0a < 0, the function is not strictly increasing.

Case 3: a=0a = 0. f(x)=66cos6xf'(x) = -6 - 6\cos6x. The maximum value of f(x)f'(x) is 66(1)=0-6 - 6(-1) = 0. So f(x)0f'(x) \le 0, and the function is not strictly increasing.

Therefore, the only values of aa for which f(x)>0f'(x) > 0 for all xx is a>6a > 6. The set of values is (6,)(6, \infty).