Solveeit Logo

Question

Question: For the reaction at 300 K, A(g)+B(g) → C(g). $\Delta$U = -3 kcal; $\Delta$S = 10 cal/K The value of...

For the reaction at 300 K, A(g)+B(g) → C(g). Δ\DeltaU = -3 kcal; Δ\DeltaS = 10 cal/K

The value of Δ\DeltaG is: [Take: R = 2 cal mol1^{-1} K1^{-1}]

Answer

-6.6 kcal

Explanation

Solution

The Gibbs Free Energy change (Δ\DeltaG) is related to enthalpy change (Δ\DeltaH), temperature (T), and entropy change (Δ\DeltaS) by the Gibbs-Helmholtz equation: ΔG=ΔHTΔS\Delta G = \Delta H - T\Delta S The enthalpy change (Δ\DeltaH) can be calculated from the internal energy change (Δ\DeltaU) using the relation: ΔH=ΔU+ΔngRT\Delta H = \Delta U + \Delta n_g RT where Δ\Deltang_g is the change in the number of moles of gas in the reaction.

For the given reaction A(g) + B(g) → C(g): The change in the number of moles of gas is: Δng=(moles of gaseous products)(moles of gaseous reactants)\Delta n_g = (\text{moles of gaseous products}) - (\text{moles of gaseous reactants}) Δng=1(1+1)=12=1\Delta n_g = 1 - (1 + 1) = 1 - 2 = -1

Given values: Temperature, T=300T = 300 K Internal energy change, ΔU=3\Delta U = -3 kcal Entropy change, ΔS=10\Delta S = 10 cal/K Gas constant, R=2R = 2 cal mol1^{-1} K1^{-1}

To maintain consistency in units, we convert all values to kilocalories (kcal): ΔU=3\Delta U = -3 kcal ΔS=10 cal/K=101000 kcal/K=0.01 kcal/K\Delta S = 10 \text{ cal/K} = \frac{10}{1000} \text{ kcal/K} = 0.01 \text{ kcal/K} R=2 cal mol1 K1=21000 kcal mol1 K1=0.002 kcal mol1 K1R = 2 \text{ cal mol}^{-1} \text{ K}^{-1} = \frac{2}{1000} \text{ kcal mol}^{-1} \text{ K}^{-1} = 0.002 \text{ kcal mol}^{-1} \text{ K}^{-1}

Now, calculate the enthalpy change (Δ\DeltaH): ΔH=ΔU+ΔngRT\Delta H = \Delta U + \Delta n_g RT ΔH=3 kcal+(1)×(0.002 kcal mol1 K1)×(300 K)\Delta H = -3 \text{ kcal} + (-1) \times (0.002 \text{ kcal mol}^{-1} \text{ K}^{-1}) \times (300 \text{ K}) ΔH=3 kcal+(0.6 kcal)\Delta H = -3 \text{ kcal} + (-0.6 \text{ kcal}) ΔH=3.6 kcal\Delta H = -3.6 \text{ kcal}

Next, calculate the TΔST\Delta S term: TΔS=(300 K)×(0.01 kcal/K)T\Delta S = (300 \text{ K}) \times (0.01 \text{ kcal/K}) TΔS=3 kcalT\Delta S = 3 \text{ kcal}

Finally, calculate the Gibbs Free Energy change (Δ\DeltaG): ΔG=ΔHTΔS\Delta G = \Delta H - T\Delta S ΔG=3.6 kcal3 kcal\Delta G = -3.6 \text{ kcal} - 3 \text{ kcal} ΔG=6.6 kcal\Delta G = -6.6 \text{ kcal}