Solveeit Logo

Question

Question: For the function $f(x) = x^2e^{x^2}$, what is $f''(x)$?...

For the function f(x)=x2ex2f(x) = x^2e^{x^2}, what is f(x)f''(x)?

A

ex2(2x4+5x2+1)e^{x^2} (2x^4 + 5x^2 + 1)

B

2ex2(2x4+5x2+1)2e^{x^2} (2x^4 + 5x^2 + 1)

C

2ex2(2x45x2+1)2e^{x^2} (2x^4 - 5x^2 + 1)

D

ex2(2x45x2+1)e^{x^2} (2x^4 - 5x^2 + 1)

Answer

2e^{x^2} (2x^4 + 5x^2 + 1)

Explanation

Solution

To find the second derivative f(x)f''(x) of the function f(x)=x2ex2f(x) = x^2e^{x^2}, we need to apply differentiation rules twice.

Step 1: Find the first derivative, f(x)f'(x)

The function f(x)=x2ex2f(x) = x^2e^{x^2} is a product of two functions: u(x)=x2u(x) = x^2 and v(x)=ex2v(x) = e^{x^2}. We use the product rule: (uv)=uv+uv(uv)' = u'v + uv'.

First, find the derivatives of u(x)u(x) and v(x)v(x):

  • u(x)=x2    u(x)=2xu(x) = x^2 \implies u'(x) = 2x
  • v(x)=ex2v(x) = e^{x^2}. To differentiate ex2e^{x^2}, we use the chain rule. Let g(x)=x2g(x) = x^2, so v(x)=eg(x)v(x) = e^{g(x)}. Then v(x)=eg(x)g(x)=ex2(2x)=2xex2v'(x) = e^{g(x)} \cdot g'(x) = e^{x^2} \cdot (2x) = 2xe^{x^2}.

Now, apply the product rule to find f(x)f'(x):

f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x)

f(x)=(2x)(ex2)+(x2)(2xex2)f'(x) = (2x)(e^{x^2}) + (x^2)(2xe^{x^2})

f(x)=2xex2+2x3ex2f'(x) = 2xe^{x^2} + 2x^3e^{x^2}

Factor out 2xex22xe^{x^2}:

f(x)=2xex2(1+x2)f'(x) = 2xe^{x^2}(1 + x^2)

Step 2: Find the second derivative, f(x)f''(x)

Now we need to differentiate f(x)=2xex2(1+x2)f'(x) = 2xe^{x^2}(1 + x^2). Again, this is a product of two functions. Let's rewrite f(x)f'(x) as f(x)=(2x+2x3)ex2f'(x) = (2x + 2x^3)e^{x^2}.

Let A(x)=2x+2x3A(x) = 2x + 2x^3 and B(x)=ex2B(x) = e^{x^2}. We use the product rule: (AB)=AB+AB(AB)' = A'B + AB'.

First, find the derivatives of A(x)A(x) and B(x)B(x):

  • A(x)=2x+2x3    A(x)=ddx(2x)+ddx(2x3)=2+6x2A(x) = 2x + 2x^3 \implies A'(x) = \frac{d}{dx}(2x) + \frac{d}{dx}(2x^3) = 2 + 6x^2
  • B(x)=ex2B(x) = e^{x^2}. As calculated before, B(x)=2xex2B'(x) = 2xe^{x^2}.

Now, apply the product rule to find f(x)f''(x):

f(x)=A(x)B(x)+A(x)B(x)f''(x) = A'(x)B(x) + A(x)B'(x)

f(x)=(2+6x2)(ex2)+(2x+2x3)(2xex2)f''(x) = (2 + 6x^2)(e^{x^2}) + (2x + 2x^3)(2xe^{x^2})

f(x)=(2+6x2)ex2+(4x2+4x4)ex2f''(x) = (2 + 6x^2)e^{x^2} + (4x^2 + 4x^4)e^{x^2}

Factor out ex2e^{x^2}:

f(x)=ex2[(2+6x2)+(4x2+4x4)]f''(x) = e^{x^2} [(2 + 6x^2) + (4x^2 + 4x^4)]

Combine like terms inside the bracket:

f(x)=ex2[4x4+6x2+4x2+2]f''(x) = e^{x^2} [4x^4 + 6x^2 + 4x^2 + 2]

f(x)=ex2[4x4+10x2+2]f''(x) = e^{x^2} [4x^4 + 10x^2 + 2]

Factor out 2 from the bracket:

f(x)=2ex2[2x4+5x2+1]f''(x) = 2e^{x^2} [2x^4 + 5x^2 + 1]