Question
Question: For the function $f(x) = x^2e^{x^2}$, what is $f''(x)$?...
For the function f(x)=x2ex2, what is f′′(x)?

ex2(2x4+5x2+1)
2ex2(2x4+5x2+1)
2ex2(2x4−5x2+1)
ex2(2x4−5x2+1)
2e^{x^2} (2x^4 + 5x^2 + 1)
Solution
To find the second derivative f′′(x) of the function f(x)=x2ex2, we need to apply differentiation rules twice.
Step 1: Find the first derivative, f′(x)
The function f(x)=x2ex2 is a product of two functions: u(x)=x2 and v(x)=ex2. We use the product rule: (uv)′=u′v+uv′.
First, find the derivatives of u(x) and v(x):
- u(x)=x2⟹u′(x)=2x
- v(x)=ex2. To differentiate ex2, we use the chain rule. Let g(x)=x2, so v(x)=eg(x). Then v′(x)=eg(x)⋅g′(x)=ex2⋅(2x)=2xex2.
Now, apply the product rule to find f′(x):
f′(x)=u′(x)v(x)+u(x)v′(x)
f′(x)=(2x)(ex2)+(x2)(2xex2)
f′(x)=2xex2+2x3ex2
Factor out 2xex2:
f′(x)=2xex2(1+x2)
Step 2: Find the second derivative, f′′(x)
Now we need to differentiate f′(x)=2xex2(1+x2). Again, this is a product of two functions. Let's rewrite f′(x) as f′(x)=(2x+2x3)ex2.
Let A(x)=2x+2x3 and B(x)=ex2. We use the product rule: (AB)′=A′B+AB′.
First, find the derivatives of A(x) and B(x):
- A(x)=2x+2x3⟹A′(x)=dxd(2x)+dxd(2x3)=2+6x2
- B(x)=ex2. As calculated before, B′(x)=2xex2.
Now, apply the product rule to find f′′(x):
f′′(x)=A′(x)B(x)+A(x)B′(x)
f′′(x)=(2+6x2)(ex2)+(2x+2x3)(2xex2)
f′′(x)=(2+6x2)ex2+(4x2+4x4)ex2
Factor out ex2:
f′′(x)=ex2[(2+6x2)+(4x2+4x4)]
Combine like terms inside the bracket:
f′′(x)=ex2[4x4+6x2+4x2+2]
f′′(x)=ex2[4x4+10x2+2]
Factor out 2 from the bracket:
f′′(x)=2ex2[2x4+5x2+1]