Solveeit Logo

Question

Question: Consider a function $f:(-1,1) \rightarrow A$ defined as $f(x)=\int \frac{dx}{(1-x)^{\frac{1}{2}}(1+x...

Consider a function f:(1,1)Af:(-1,1) \rightarrow A defined as f(x)=dx(1x)12(1+x)32f(x)=\int \frac{dx}{(1-x)^{\frac{1}{2}}(1+x)^{\frac{3}{2}}}, f(0)=1f(0)=-1. Then which of the following option(s) is/are correct?

A

If f(x) is bijective function, then A=(0,){1}A = (0, \infty) \cup \{-1\}

B

If f(x) is bijective function, then A=(,0)A = (-\infty, 0)

C

limx1f(x)=\lim_{x \rightarrow 1} f(x) = \infty

D

f(12)=13f(\frac{1}{2}) = -\frac{1}{\sqrt{3}}

Answer

B, D

Explanation

Solution

  1. Evaluate the integral f(x)=dx(1x)12(1+x)32f(x) = \int \frac{dx}{(1-x)^{\frac{1}{2}}(1+x)^{\frac{3}{2}}} using the substitution x=cos2θx = \cos 2\theta. This yields f(x)=tanθ+C=1x1+x+Cf(x) = -\tan\theta + C = -\sqrt{\frac{1-x}{1+x}} + C.

  2. Apply the condition f(0)=1f(0)=-1 to find CC: f(0)=101+0+C=1+Cf(0) = -\sqrt{\frac{1-0}{1+0}} + C = -1+C. Since f(0)=1f(0)=-1, C=0C=0. So, f(x)=1x1+xf(x) = -\sqrt{\frac{1-x}{1+x}}.

  3. Determine the range of f(x)f(x) for x(1,1)x \in (-1, 1). As x1+x \rightarrow -1^+, f(x)f(x) \rightarrow -\infty. As x1x \rightarrow 1^-, f(x)0f(x) \rightarrow 0. Thus, the range is (,0)(-\infty, 0).

  4. Check injectivity by finding f(x)f'(x). f(x)=1(1x)1/2(1+x)3/2f'(x) = \frac{1}{(1-x)^{1/2}(1+x)^{3/2}}. For x(1,1)x \in (-1, 1), f(x)>0f'(x) > 0, so f(x)f(x) is strictly increasing and thus injective.

  5. For f(x)f(x) to be bijective, its codomain AA must be equal to its range. Therefore, A=(,0)A = (-\infty, 0). This confirms Option B is correct.

  6. Evaluate limx1f(x)=limx11x1+x=0\lim_{x \rightarrow 1} f(x) = \lim_{x \rightarrow 1^-} -\sqrt{\frac{1-x}{1+x}} = 0. This makes Option C incorrect.

  7. Evaluate f(12)=1121+12=1/23/2=13=13f(\frac{1}{2}) = -\sqrt{\frac{1-\frac{1}{2}}{1+\frac{1}{2}}} = -\sqrt{\frac{1/2}{3/2}} = -\sqrt{\frac{1}{3}} = -\frac{1}{\sqrt{3}}. This confirms Option D is correct.

  8. Option A is incorrect as the range is (,0)(-\infty, 0).