Solveeit Logo

Question

Question: The coefficient of $x^5$ in the expansion of $(x^2-x-2)^3$ is...

The coefficient of x5x^5 in the expansion of (x2x2)3(x^2-x-2)^3 is

A

6

B

-3

C

-6

D

3

Answer

-3

Explanation

Solution

To find the coefficient of x5x^5 in (x2x2)3(x^2-x-2)^3, we can use the multinomial theorem. The general term in the expansion of (x2+(x)+(2))3(x^2+(-x)+(-2))^3 is 3!p!q!r!(x2)p(x)q(2)r\frac{3!}{p!q!r!}(x^2)^p(-x)^q(-2)^r, where p+q+r=3p+q+r=3. This simplifies to 3!p!q!r!(1)q(2)rx2p+q\frac{3!}{p!q!r!}(-1)^q(-2)^r x^{2p+q}. We need 2p+q=52p+q=5.

Possible non-negative integer solutions for (p,q,r)(p,q,r) satisfying p+q+r=3p+q+r=3 and 2p+q=52p+q=5:

  • If p=0p=0, q=5q=5. Then r=2r=-2 (not valid).

  • If p=1p=1, q=3q=3. Then r=1r=-1 (not valid).

  • If p=2p=2, q=1q=1. Then r=0r=0 (valid). The coefficient for this term is 3!2!1!0!(1)1(2)0=3×(1)×1=3\frac{3!}{2!1!0!}(-1)^1(-2)^0 = 3 \times (-1) \times 1 = -3.

  • If p=3p=3, q=1q=-1 (not valid).

Thus, the only term contributing to x5x^5 is when (p,q,r)=(2,1,0)(p,q,r)=(2,1,0), and its coefficient is -3.