Solveeit Logo

Question

Question: White light can be assumed as combination of three wavelength $\lambda$, $\frac{3\lambda}{2}$ and $2...

White light can be assumed as combination of three wavelength λ\lambda, 3λ2\frac{3\lambda}{2} and 2λ2\lambda (where λ=3800A\lambda = 3800 \overset{\circ}{A}). Distance of 2nd white fringe from central white fringe in modified YDSE is N mm, then 5N is (d=3.8d = 3.8 mm, D=1D = 1m)

A

2

B

4

C

6

D

8

Answer

6

Explanation

Solution

In Young's Double Slit Experiment (YDSE), white light consists of various wavelengths. The central fringe is always white because all wavelengths interfere constructively at the center (path difference = 0). For subsequent white fringes, we need to find positions where constructive interference occurs for all the specified wavelengths simultaneously.

Let the three wavelengths be λ1=λ\lambda_1 = \lambda, λ2=3λ2\lambda_2 = \frac{3\lambda}{2}, and λ3=2λ\lambda_3 = 2\lambda. The position of the nn-th order fringe for a wavelength λi\lambda_i is given by yi=niλiDdy_i = \frac{n_i \lambda_i D}{d}, where nin_i is an integer. For a white fringe to form at a position yy, the path difference Δx=ydD\Delta x = y \frac{d}{D} must be an integer multiple of each of the given wavelengths. So, Δx=n1λ1=n2λ2=n3λ3\Delta x = n_1 \lambda_1 = n_2 \lambda_2 = n_3 \lambda_3, where n1,n2,n3n_1, n_2, n_3 are integers.

Substituting the given wavelengths: Δx=n1λ=n2(3λ2)=n3(2λ)\Delta x = n_1 \lambda = n_2 \left(\frac{3\lambda}{2}\right) = n_3 (2\lambda)

This implies that Δx\Delta x must be a common multiple of λ\lambda, 3λ2\frac{3\lambda}{2}, and 2λ2\lambda. The smallest non-zero common multiple corresponds to the first white fringe after the central one. We find the Least Common Multiple (LCM) of these wavelengths: LCM(λ,3λ2,2λ)(\lambda, \frac{3\lambda}{2}, 2\lambda) To find the LCM of fractions, we can write them with a common denominator: λ=2λ2\lambda = \frac{2\lambda}{2} 3λ2\frac{3\lambda}{2} 2λ=4λ22\lambda = \frac{4\lambda}{2} LCM(2λ2,3λ2,4λ2)=LCM(2λ,3λ,4λ)GCD(2,2,2)(\frac{2\lambda}{2}, \frac{3\lambda}{2}, \frac{4\lambda}{2}) = \frac{\text{LCM}(2\lambda, 3\lambda, 4\lambda)}{\text{GCD}(2, 2, 2)} LCM(2λ,3λ,4λ)=λ×LCM(2,3,4)=λ×12=12λ(2\lambda, 3\lambda, 4\lambda) = \lambda \times \text{LCM}(2, 3, 4) = \lambda \times 12 = 12\lambda. GCD(2,2,2)=2(2, 2, 2) = 2. So, the smallest non-zero path difference for a white fringe is 12λ2=6λ\frac{12\lambda}{2} = 6\lambda.

The path differences for consecutive white fringes are 0,6λ,12λ,18λ,0, 6\lambda, 12\lambda, 18\lambda, \ldots. The positions of these white fringes are given by ym=m6λDdy_m = \frac{m \cdot 6\lambda D}{d}, where m=0,1,2,m = 0, 1, 2, \ldots.

  • Central white fringe (m=0m=0): y0=0y_0 = 0.
  • 1st white fringe (m=1m=1): y1=6λDdy_1 = \frac{6\lambda D}{d}.
  • 2nd white fringe (m=2m=2): y2=12λDdy_2 = \frac{12\lambda D}{d}.

The question asks for the distance of the 2nd white fringe from the central white fringe, which is y2y_2. y2=12λDdy_2 = \frac{12\lambda D}{d}

Given values: λ=3800A=3800×1010\lambda = 3800 \overset{\circ}{A} = 3800 \times 10^{-10} m d=3.8d = 3.8 mm =3.8×103= 3.8 \times 10^{-3} m D=1D = 1 m

Substitute these values into the expression for y2y_2: y2=12×(3800×1010 m)×(1 m)3.8×103 my_2 = \frac{12 \times (3800 \times 10^{-10} \text{ m}) \times (1 \text{ m})}{3.8 \times 10^{-3} \text{ m}} y2=12×(3.8×103×1010)×13.8×103 my_2 = \frac{12 \times (3.8 \times 10^3 \times 10^{-10}) \times 1}{3.8 \times 10^{-3}} \text{ m} y2=12×3.8×1073.8×103 my_2 = \frac{12 \times 3.8 \times 10^{-7}}{3.8 \times 10^{-3}} \text{ m} y2=12×107×103 my_2 = 12 \times 10^{-7} \times 10^3 \text{ m} y2=12×104y_2 = 12 \times 10^{-4} m

The distance is given as NN mm. Convert y2y_2 to millimeters: N mm=12×104 m×1000 mm1 mN \text{ mm} = 12 \times 10^{-4} \text{ m} \times \frac{1000 \text{ mm}}{1 \text{ m}} N=12×101N = 12 \times 10^{-1} mm N=1.2N = 1.2 mm

The question asks for the value of 5N5N: 5N=5×1.2=6.05N = 5 \times 1.2 = 6.0