Solveeit Logo

Question

Question: The area of region represented by $\{(x, y): x^2 + y^2 \geq c^2, y^2 + 4x^2 \leq 4c^2, |y| < c, c > ...

The area of region represented by {(x,y):x2+y2c2,y2+4x24c2,y<c,c>0}\{(x, y): x^2 + y^2 \geq c^2, y^2 + 4x^2 \leq 4c^2, |y| < c, c > 0\}

A

(2π+332)c2(2\pi + 3^{\frac{3}{2}})c^2

B

(2π332)c2(2\pi - 3^{\frac{3}{2}})c^2

C

c2(332π)3\frac{c^2(3^{\frac{3}{2}} - \pi)}{3}

D

c2(332π)6\frac{c^2(3^{\frac{3}{2}} - \pi)}{6}

Answer

c2(332π)3\frac{c^2(3^{\frac{3}{2}} - \pi)}{3}

Explanation

Solution

The region is defined by the following inequalities:

  1. x2+y2c2x^2 + y^2 \geq c^2 (Region outside or on the circle C:x2+y2=c2C: x^2 + y^2 = c^2)
  2. y2+4x24c2y^2 + 4x^2 \leq 4c^2 (Region inside or on the ellipse E:x2c2+y2(2c)2=1E: \frac{x^2}{c^2} + \frac{y^2}{(2c)^2} = 1)
  3. y<c|y| < c (Region between the lines y=cy = -c and y=cy = c, exclusive of the lines)
  4. c>0c > 0

Let AEA_E be the area of the ellipse EE bounded by the lines y=cy=-c and y=cy=c. Let ACA_C be the area of the circle CC.

The problem asks for the area of the region that is inside the ellipse, outside the circle, and between y=cy=-c and y=cy=c.

Any point (x,y)(x,y) such that x2+y2<c2x^2+y^2 < c^2 (i.e., inside the circle) automatically satisfies y2<c2y^2 < c^2, which implies y<c|y| < c. Also, if x2+y2<c2x^2+y^2 < c^2, then 4x2+y2<4c24x^2+y^2 < 4c^2 (since 4x2x24x^2 \ge x^2), which means the circle is entirely contained within the ellipse.

Therefore, the desired area is the area of the part of the ellipse between y=cy=-c and y=cy=c, minus the area of the circle.

Step 1: Calculate the area of the ellipse y2+4x24c2y^2 + 4x^2 \leq 4c^2 bounded by y<c|y| < c.

From the ellipse equation, 4x2=4c2y24x^2 = 4c^2 - y^2, so x2=c2y24x^2 = c^2 - \frac{y^2}{4}, and x=±124c2y2x = \pm \frac{1}{2}\sqrt{4c^2 - y^2}.

The area is given by the integral:

AE,y<c=cc2xdy=cc4c2y2dyA_{E, |y|<c} = \int_{-c}^{c} 2x \, dy = \int_{-c}^{c} \sqrt{4c^2 - y^2} \, dy.

To evaluate this integral, let y=2csinθy = 2c \sin\theta. Then dy=2ccosθdθdy = 2c \cos\theta \, d\theta.

When y=cy = -c, sinθ=1/2    θ=π/6\sin\theta = -1/2 \implies \theta = -\pi/6. When y=cy = c, sinθ=1/2    θ=π/6\sin\theta = 1/2 \implies \theta = \pi/6.

Substitute these into the integral:

AE,y<c=π/6π/64c2(2csinθ)2(2ccosθ)dθA_{E, |y|<c} = \int_{-\pi/6}^{\pi/6} \sqrt{4c^2 - (2c \sin\theta)^2} (2c \cos\theta) \, d\theta

=π/6π/64c2(1sin2θ)(2ccosθ)dθ= \int_{-\pi/6}^{\pi/6} \sqrt{4c^2(1 - \sin^2\theta)} (2c \cos\theta) \, d\theta

=π/6π/64c2cos2θ(2ccosθ)dθ= \int_{-\pi/6}^{\pi/6} \sqrt{4c^2 \cos^2\theta} (2c \cos\theta) \, d\theta

Since θ[π/6,π/6]\theta \in [-\pi/6, \pi/6], cosθ0\cos\theta \geq 0, so cos2θ=cosθ\sqrt{\cos^2\theta} = \cos\theta.

=π/6π/6(2ccosθ)(2ccosθ)dθ= \int_{-\pi/6}^{\pi/6} (2c \cos\theta) (2c \cos\theta) \, d\theta

=4c2π/6π/6cos2θdθ= 4c^2 \int_{-\pi/6}^{\pi/6} \cos^2\theta \, d\theta

Using the identity cos2θ=1+cos(2θ)2\cos^2\theta = \frac{1 + \cos(2\theta)}{2}:

=4c2π/6π/61+cos(2θ)2dθ= 4c^2 \int_{-\pi/6}^{\pi/6} \frac{1 + \cos(2\theta)}{2} \, d\theta

=2c2[θ+sin(2θ)2]π/6π/6= 2c^2 \left[ \theta + \frac{\sin(2\theta)}{2} \right]_{-\pi/6}^{\pi/6}

=2c2[(π6+sin(π/3)2)(π6+sin(π/3)2)]= 2c^2 \left[ \left( \frac{\pi}{6} + \frac{\sin(\pi/3)}{2} \right) - \left( -\frac{\pi}{6} + \frac{\sin(-\pi/3)}{2} \right) \right]

=2c2[π6+3/22+π6+3/22]= 2c^2 \left[ \frac{\pi}{6} + \frac{\sqrt{3}/2}{2} + \frac{\pi}{6} + \frac{\sqrt{3}/2}{2} \right]

=2c2[2π6+32]= 2c^2 \left[ \frac{2\pi}{6} + \frac{\sqrt{3}}{2} \right]

=2πc23+3c2= \frac{2\pi c^2}{3} + \sqrt{3}c^2.

Step 2: Calculate the area of the circle x2+y2<c2x^2 + y^2 < c^2.

The area of a circle with radius cc is πc2\pi c^2.

Step 3: Subtract the area of the circle from the area of the ellipse part.

Desired Area =AE,y<cAC= A_{E, |y|<c} - A_C

Desired Area =(2πc23+3c2)πc2= \left( \frac{2\pi c^2}{3} + \sqrt{3}c^2 \right) - \pi c^2

Desired Area =3c2+(2π3π)c2= \sqrt{3}c^2 + \left( \frac{2\pi}{3} - \pi \right)c^2

Desired Area =3c2π3c2= \sqrt{3}c^2 - \frac{\pi}{3}c^2

Desired Area =c2(3π3)= c^2 \left( \sqrt{3} - \frac{\pi}{3} \right)

This can be written as c2(33π)3\frac{c^2(3\sqrt{3} - \pi)}{3}.

Since 33=331/2=33/23\sqrt{3} = 3 \cdot 3^{1/2} = 3^{3/2}, the area is c2(33/2π)3\frac{c^2(3^{3/2} - \pi)}{3}.