Solveeit Logo

Question

Question: A cylindrical capacitor has two co-axial cylinder of length 20 cm and radii 1.8 cm and 1.82 cm. The ...

A cylindrical capacitor has two co-axial cylinder of length 20 cm and radii 1.8 cm and 1.82 cm. The outer cylinder is earthed. The net capacitance of the system is N×109N \times 10^{-9} F. The value of NN is ______

Answer

1.0

Explanation

Solution

The capacitance of a cylindrical capacitor is calculated using the formula C=2πε0Lln(rori)C = \frac{2\pi\varepsilon_{0}L}{\ln\left( \frac{r_{o}}{r_{i}} \right)}.

Given L=0.2 mL = 0.2 \text{ m}, ri=0.018 mr_i = 0.018 \text{ m}, ro=0.0182 mr_o = 0.0182 \text{ m}, and ε0=8.854×1012 F/m\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}.

Substitute these values: C=2π(8.854×1012)(0.2)ln(0.01820.018)C = \frac{2\pi (8.854 \times 10^{-12}) (0.2)}{\ln\left( \frac{0.0182}{0.018} \right)}

C=11.12158×1012ln(1.011111...)C = \frac{11.12158 \times 10^{-12}}{\ln(1.011111...)}

C=11.12158×10120.0110505C = \frac{11.12158 \times 10^{-12}}{0.0110505}

C1006.43×1012 F1.00643×109 FC \approx 1006.43 \times 10^{-12} \text{ F} \approx 1.00643 \times 10^{-9} \text{ F}.

Since the capacitance is N×109N \times 10^{-9} F, N1.00643N \approx 1.00643. Rounding to one decimal place, N=1.0N=1.0.