Solveeit Logo

Question

Question: Question: 2.10 g mixture of \[{\text{NaHC}}{{\text{O}}_{\text{3}}}\] and \({\text{KCl}}{{\text{O}}_{...

Question: 2.10 g mixture of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} and KClO3{\text{KCl}}{{\text{O}}_{\text{3}}} requires 100 mL of 0.1N HCl for complete reaction. If x grams amount of residue that would be obtained on strongly heating 2.20 g of the same mixture then, determine the value of 1000x.
A. 1358
B. 1300
C. 1380
D. None of the above

Explanation

Solution

Assume one of the reactants weigh ‘a’ gram from the total of 2.10 g, and recall the concepts of stoichiometry and stoichiometric calculations, and to get these values write the balanced chemical reaction of heating of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} and KClO3{\text{KCl}}{{\text{O}}_{\text{3}}}

Complete Step by step answer: As mentioned in hint let’s assume the weight of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} as ‘a’,
\Rightarrow weight of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}} = 2.10 - a (since the total weight of the mixture is 2.10 g)
Since only NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} will react with the 0.1N HCl solution, we can calculate its mass using the formula of normality,
\Rightarrow Normality(N) = No. of gram equivalent of solute Volume of solution(L){\text{Normality(N) = }}\dfrac{{{\text{No}}{\text{. of gram equivalent of solute }}}}{{{\text{Volume of solution(L)}}}}
\Rightarrow No. gram equivalent of NaHCO3 = N × Volume of solution(L){\text{No}}{\text{. gram equivalent of NaHC}}{{\text{O}}_3}{\text{ = N }} \times {\text{ Volume of solution(L)}}
\Rightarrow No. gram equivalent of NaHCO3{\text{No}}{\text{. gram equivalent of NaHC}}{{\text{O}}_3} = 0.1 × 100×103 \times {\text{ }}100 \times {10^{ - 3}} (we have changed the unit ml to L by multiplying 1000 with it. Since 1L = 1000ml)
\Rightarrow No. gram equivalent of NaHCO3{\text{No}}{\text{. gram equivalent of NaHC}}{{\text{O}}_3} = 102{10^{ - 2}}
We can use the gram equivalent weight of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} to find out its mass, using the formula,
\Rightarrow No. gram equivalent of NaHCO3= weight of NaHCO3Equivalent weight NaHCO3{\text{No}}{\text{. gram equivalent of NaHC}}{{\text{O}}_3} = {\text{ }}\dfrac{{{\text{weight of NaHC}}{{\text{O}}_3}}}{{{\text{Equivalent weight NaHC}}{{\text{O}}_3}}}
\Rightarrow weight of NaHCO3 = No. gram equivalent of NaHCO3 × Equivalent weight NaHCO3{\text{weight of NaHC}}{{\text{O}}_3}{\text{ = No}}{\text{. gram equivalent of NaHC}}{{\text{O}}_3}{\text{ }} \times {\text{ Equivalent weight NaHC}}{{\text{O}}_3}
\Rightarrow weight of NaHCO3{\text{weight of NaHC}}{{\text{O}}_3} = 102{10^{ - 2}} ×\times 84 (equivalent weight of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} is 84g)
\Rightarrow weight of NaHCO3{\text{weight of NaHC}}{{\text{O}}_3} = 0.84 g
\Rightarrow a = 0.84g
Now we can calculate the weight of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}},
\Rightarrow weight of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}} = 2.10 - a
\Rightarrow weight of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}} = 2.10 - 0.84
\Rightarrow weight of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}} = 1.26g
It is time to write the balanced chemical equation for the heating of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}} and NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}}
iii. 2NaHCO3ΔNa2CO3 + H2 + CO2{\text{2NaHC}}{{\text{O}}_{\text{3}}}\xrightarrow{\Delta }{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O }} \uparrow {\text{ + C}}{{\text{O}}_{\text{2}}} \uparrow
iv. 2KClO3Δ2KCl + 3O2{\text{2KCl}}{{\text{O}}_{\text{3}}}\xrightarrow{\Delta }{\text{2KCl + 3}}{{\text{O}}_{\text{2}}} \uparrow
From the above chemical reaction, we can conclude that
2 moles of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} and 2 moles of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}} are being consumed, also the residue are Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} and KCl in the reaction since we are heating, the water molecules will get evaporated and carbon dioxide and oxygen gas will be liberated.
Now, the weight of 2 moles of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}}, 2 mole of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}}, 2 moles of KCl and and 1 mole of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} are;
\Rightarrow weight of 2 moles of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} = 2 ×\times 84.007 = 168.01g (molecular mass of NaHCO3{\text{NaHC}}{{\text{O}}_{\text{3}}} = 84)
\Rightarrow weight of 2 moles of KClO3{\text{KCl}}{{\text{O}}_{\text{3}}} = 122.5 ×\times 2 = 245g
\Rightarrow weight of 2 moles of KCl = 74.5×\times2 = 149g
\Rightarrow weight of 1 mole of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} = 106
\therefore The weight of residue from 2.1 g of the mixture = weight of 1 mole of Na2CO3weight of 2 moles of NaHCO3×0.84 + weight of 2 moles of KClweight of 2 moles of KClO3×1.26\dfrac{{{\text{weight of 1 mole of N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}}}{{{\text{weight of 2 moles of NaHC}}{{\text{O}}_3}}} \times 0.84{\text{ + }}\dfrac{{{\text{weight of 2 moles of KCl}}}}{{{\text{weight of 2 moles of KCl}}{{\text{O}}_3}}} \times 1.26
\Rightarrow 106168.01×0.84 + 149245×1.26\dfrac{{106}}{{168.01}} \times 0.84{\text{ }} + {\text{ }}\dfrac{{149}}{{245}} \times 1.26 = 0.53 + 0.766 = 1.296
\therefore Weight of residue from 2.2g of the mixture = 1.2962.1×2.2\dfrac{{1.296}}{{2.1}} \times 2.2 = 1.358g
\therefore the value of x = 1.358
\Rightarrow 1000x = 1358

Hence, the correct answer is option is (A) i.e., 1358.

Note: One may end their solution after finding the weight of residue in 2.10 g of the solution mixture assuming it to the final answer, however, the question asks for the weight of residue in 2.2 g solution of the same mixture. Hence, carefully understanding the question is necessary.