Solveeit Logo

Question

Question: Calculate magnitude of work done in calorie by one mole of an ideal gas subjected to the process as ...

Calculate magnitude of work done in calorie by one mole of an ideal gas subjected to the process as shown in figure. [Given: R = 2 Cal/mol / K, ln2=0.7\ln 2 = 0.7]

A

640

Answer

640

Explanation

Solution

The work done by an ideal gas is given by W=PdVW = \int P dV. From the ideal gas law, PV=nRTPV = nRT, so P=nRTVP = \frac{nRT}{V}. The process is represented by a straight line in the T-V diagram, passing through points (V1,T1)=(20 m3,200 K)(V_1, T_1) = (20 \text{ m}^3, 200 \text{ K}) and (V2,T2)=(40 m3,800 K)(V_2, T_2) = (40 \text{ m}^3, 800 \text{ K}). The equation of the line is T=mV+cT = mV + c. The slope is m=T2T1V2V1=8002004020=60020=30 K/m3m = \frac{T_2 - T_1}{V_2 - V_1} = \frac{800 - 200}{40 - 20} = \frac{600}{20} = 30 \text{ K/m}^3. Using point (20,200)(20, 200): 200=30(20)+c    200=600+c    c=400 K200 = 30(20) + c \implies 200 = 600 + c \implies c = -400 \text{ K}. So, T=30V400T = 30V - 400.

Now, substitute P in the work integral: W=V1V2nRTVdVW = \int_{V_1}^{V_2} \frac{nRT}{V} dV W=nRV1V230V400VdVW = nR \int_{V_1}^{V_2} \frac{30V - 400}{V} dV W=nRV1V2(30400V)dVW = nR \int_{V_1}^{V_2} (30 - \frac{400}{V}) dV W=nR[30V400lnV]V1V2W = nR \left[ 30V - 400 \ln|V| \right]_{V_1}^{V_2} W=nR[(30V2400lnV2)(30V1400lnV1)]W = nR \left[ (30V_2 - 400 \ln V_2) - (30V_1 - 400 \ln V_1) \right] W=nR[30(V2V1)400(lnV2lnV1)]W = nR \left[ 30(V_2 - V_1) - 400 (\ln V_2 - \ln V_1) \right] W=nR[30(V2V1)400ln(V2V1)]W = nR \left[ 30(V_2 - V_1) - 400 \ln\left(\frac{V_2}{V_1}\right) \right]

Given n=1n = 1 mol, R=2R = 2 Cal/mol/K, V1=20V_1 = 20 m³, V2=40V_2 = 40 m³, and ln2=0.7\ln 2 = 0.7. W=(1 mol)×(2 Cal/mol/K)[30(40 m320 m3)400ln(40 m320 m3)]W = (1 \text{ mol}) \times (2 \text{ Cal/mol/K}) \left[ 30(40 \text{ m}^3 - 20 \text{ m}^3) - 400 \ln\left(\frac{40 \text{ m}^3}{20 \text{ m}^3}\right) \right] W=2 Cal/K[30(20 m3)400ln(2)]W = 2 \text{ Cal/K} \left[ 30(20 \text{ m}^3) - 400 \ln(2) \right] W=2 Cal/K[600 K400×0.7]W = 2 \text{ Cal/K} \left[ 600 \text{ K} - 400 \times 0.7 \right] W=2 Cal/K[600 K280 K]W = 2 \text{ Cal/K} \left[ 600 \text{ K} - 280 \text{ K} \right] W=2 Cal/K[320 K]W = 2 \text{ Cal/K} \left[ 320 \text{ K} \right] W=640 CalW = 640 \text{ Cal}.

Since the volume increases, the work done by the gas is positive. The magnitude of work done is therefore 640 Cal.