Solveeit Logo

Question

Question: $\int \frac{sin x}{3+4cos^2x}dx = Atan^{-1}(Bcosx)+c$ where c is a constant of integration. Then, t...

sinx3+4cos2xdx=Atan1(Bcosx)+c\int \frac{sin x}{3+4cos^2x}dx = Atan^{-1}(Bcosx)+c

where c is a constant of integration. Then, the value of A+B is:

A

523\frac{5}{2\sqrt{3}}

B

123\frac{-1}{2\sqrt{3}}

C

23\frac{-2}{\sqrt{3}}

D

32\frac{\sqrt{3}}{2}

Answer

32\frac{\sqrt{3}}{2}

Explanation

Solution

To evaluate the integral sinx3+4cos2xdx\int \frac{\sin x}{3+4\cos^2x}dx, we use the method of substitution.

Let u=cosxu = \cos x. Differentiating both sides with respect to xx, we get: du=sinxdxdu = -\sin x \, dx This implies sinxdx=du\sin x \, dx = -du.

Substitute these into the integral: sinx3+4cos2xdx=du3+4u2\int \frac{\sin x}{3+4\cos^2x}dx = \int \frac{-du}{3+4u^2} =du4u2+3= -\int \frac{du}{4u^2+3} Factor out 4 from the denominator: =14duu2+34= -\frac{1}{4}\int \frac{du}{u^2+\frac{3}{4}} This integral is of the standard form dxx2+a2=1atan1(xa)+C\int \frac{dx}{x^2+a^2} = \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C. In our case, x=ux=u and a2=34a^2 = \frac{3}{4}, so a=34=32a = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}.

Applying the formula: 14[132tan1(u32)]+c-\frac{1}{4}\left[ \frac{1}{\frac{\sqrt{3}}{2}}\tan^{-1}\left(\frac{u}{\frac{\sqrt{3}}{2}}\right) \right] + c =14[23tan1(2u3)]+c= -\frac{1}{4}\left[ \frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{2u}{\sqrt{3}}\right) \right] + c =123tan1(2u3)+c= -\frac{1}{2\sqrt{3}}\tan^{-1}\left(\frac{2u}{\sqrt{3}}\right) + c Now, substitute back u=cosxu = \cos x: =123tan1(2cosx3)+c= -\frac{1}{2\sqrt{3}}\tan^{-1}\left(\frac{2\cos x}{\sqrt{3}}\right) + c

The given form of the integral is Atan1(Bcosx)+cA\tan^{-1}(B\cos x)+c. Comparing our result with the given form: A=123A = -\frac{1}{2\sqrt{3}} B=23B = \frac{2}{\sqrt{3}}

We need to find the value of A+B: A+B=123+23A+B = -\frac{1}{2\sqrt{3}} + \frac{2}{\sqrt{3}} To add these fractions, we find a common denominator, which is 232\sqrt{3}: A+B=123+2×223A+B = -\frac{1}{2\sqrt{3}} + \frac{2 \times 2}{2\sqrt{3}} A+B=123+423A+B = -\frac{1}{2\sqrt{3}} + \frac{4}{2\sqrt{3}} A+B=1+423A+B = \frac{-1+4}{2\sqrt{3}} A+B=323A+B = \frac{3}{2\sqrt{3}} To simplify, we can rationalize the denominator by multiplying the numerator and denominator by 3\sqrt{3}: A+B=323×33A+B = \frac{3}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} A+B=332×3A+B = \frac{3\sqrt{3}}{2 \times 3} A+B=336A+B = \frac{3\sqrt{3}}{6} A+B=32A+B = \frac{\sqrt{3}}{2}

The value of A+B is 32\frac{\sqrt{3}}{2}.