Question
Question: Evaluate $\int x^2\sin(x) dx$ using integration by parts....
Evaluate ∫x2sin(x)dx using integration by parts.

-x2cos(x) + 2x sin(x) + C
-x2cos(x) + 2x sin(x) + 2cos(x) + C
x2 sin(x) - 2x cos(x) + 2 sin(x) + C
-x2cos(x) + 2x sin(x) - 2cos(x) + C
-x2cos(x) + 2x sin(x) + 2cos(x) + C
Solution
To evaluate the integral ∫x2sin(x)dx, we use integration by parts twice. The integration by parts formula is:
∫udv=uv−∫vdu
First application of integration by parts:
Let u=x2 and dv=sin(x)dx. Then, du=2xdx and v=−cos(x).
Applying the formula:
∫x2sin(x)dx=−x2cos(x)−∫(−cos(x))(2x)dx=−x2cos(x)+∫2xcos(x)dx
Second application of integration by parts:
Now, we need to evaluate ∫2xcos(x)dx. Let u′=2x and dv′=cos(x)dx. Then, du′=2dx and v′=sin(x).
Applying the formula:
∫2xcos(x)dx=2xsin(x)−∫2sin(x)dx=2xsin(x)+2cos(x)
Combine the results:
Substitute back into the first equation:
∫x2sin(x)dx=−x2cos(x)+2xsin(x)+2cos(x)+C