Solveeit Logo

Question

Question: Evaluate $\int x^2\sin(x) dx$ using integration by parts....

Evaluate x2sin(x)dx\int x^2\sin(x) dx using integration by parts.

A

-x2^2cos(x) + 2x sin(x) + C

B

-x2^2cos(x) + 2x sin(x) + 2cos(x) + C

C

x2^2 sin(x) - 2x cos(x) + 2 sin(x) + C

D

-x2^2cos(x) + 2x sin(x) - 2cos(x) + C

Answer

-x2^2cos(x) + 2x sin(x) + 2cos(x) + C

Explanation

Solution

To evaluate the integral x2sin(x)dx\int x^2\sin(x) dx, we use integration by parts twice. The integration by parts formula is:

udv=uvvdu\int u \, dv = uv - \int v \, du

First application of integration by parts:

Let u=x2u = x^2 and dv=sin(x)dxdv = \sin(x) dx. Then, du=2xdxdu = 2x \, dx and v=cos(x)v = -\cos(x).

Applying the formula:

x2sin(x)dx=x2cos(x)(cos(x))(2x)dx=x2cos(x)+2xcos(x)dx\int x^2\sin(x) dx = -x^2\cos(x) - \int (-\cos(x))(2x) dx = -x^2\cos(x) + \int 2x\cos(x) dx

Second application of integration by parts:

Now, we need to evaluate 2xcos(x)dx\int 2x\cos(x) dx. Let u=2xu' = 2x and dv=cos(x)dxdv' = \cos(x) dx. Then, du=2dxdu' = 2 \, dx and v=sin(x)v' = \sin(x).

Applying the formula:

2xcos(x)dx=2xsin(x)2sin(x)dx=2xsin(x)+2cos(x)\int 2x\cos(x) dx = 2x\sin(x) - \int 2\sin(x) dx = 2x\sin(x) + 2\cos(x)

Combine the results:

Substitute back into the first equation:

x2sin(x)dx=x2cos(x)+2xsin(x)+2cos(x)+C\int x^2\sin(x) dx = -x^2\cos(x) + 2x\sin(x) + 2\cos(x) + C