Solveeit Logo

Question

Question: If the area of region bounded by the curves $f(x) = |\sin x|$ and $g(x) = \frac{2}{11}\sin^{-1}(\sin...

If the area of region bounded by the curves f(x)=sinxf(x) = |\sin x| and g(x)=211sin1(sinx)g(x) = \frac{2}{11}\sin^{-1}(\sin x) lying between the lines x=0x=0 and x=2πx=2\pi is

Answer

4

Explanation

Solution

To find the area of the region bounded by the curves f(x)=sinxf(x) = |\sin x| and g(x)=211sin1(sinx)g(x) = \frac{2}{11}\sin^{-1}(\sin x) between x=0x=0 and x=2πx=2\pi, we first analyze the functions in the given interval.

1. Analyze f(x)=sinxf(x) = |\sin x|:

  • For x[0,π]x \in [0, \pi], sinx0\sin x \ge 0, so f(x)=sinxf(x) = \sin x.
  • For x(π,2π]x \in (\pi, 2\pi], sinx<0\sin x < 0, so f(x)=sinxf(x) = -\sin x.

The graph of f(x)f(x) consists of two "humps" above the x-axis, each having an area of 0πsinxdx=2\int_0^\pi \sin x dx = 2. Thus, 02πf(x)dx=0πsinxdx+π2π(sinx)dx=[cosx]0π+[cosx]π2π=((1)+1)+(1(1))=2+2=4\int_0^{2\pi} f(x) dx = \int_0^\pi \sin x dx + \int_\pi^{2\pi} (-\sin x) dx = [-\cos x]_0^\pi + [\cos x]_\pi^{2\pi} = (-(-1)+1) + (1-(-1)) = 2+2=4.

2. Analyze g(x)=211sin1(sinx)g(x) = \frac{2}{11}\sin^{-1}(\sin x):

The function sin1(sinx)\sin^{-1}(\sin x) is defined piecewise in [0,2π][0, 2\pi]:

  • For x[0,π2]x \in [0, \frac{\pi}{2}], sin1(sinx)=x\sin^{-1}(\sin x) = x.
  • For x(π2,3π2]x \in (\frac{\pi}{2}, \frac{3\pi}{2}], sin1(sinx)=πx\sin^{-1}(\sin x) = \pi - x.
  • For x(3π2,2π]x \in (\frac{3\pi}{2}, 2\pi], sin1(sinx)=x2π\sin^{-1}(\sin x) = x - 2\pi.

So, g(x)g(x) is:

g(x)={211xif 0xπ2211(πx)if π2<x3π2211(x2π)if 3π2<x2πg(x) = \begin{cases} \frac{2}{11}x & \text{if } 0 \le x \le \frac{\pi}{2} \\ \frac{2}{11}(\pi - x) & \text{if } \frac{\pi}{2} < x \le \frac{3\pi}{2} \\ \frac{2}{11}(x - 2\pi) & \text{if } \frac{3\pi}{2} < x \le 2\pi \end{cases}

Let's evaluate g(x)g(x) at key points: g(0)=0g(0)=0, g(π2)=211π2=π11g(\frac{\pi}{2}) = \frac{2}{11}\frac{\pi}{2} = \frac{\pi}{11}, g(π)=211(ππ)=0g(\pi) = \frac{2}{11}(\pi-\pi) = 0, g(3π2)=211(π3π2)=π11g(\frac{3\pi}{2}) = \frac{2}{11}(\pi-\frac{3\pi}{2}) = -\frac{\pi}{11}, g(2π)=211(2π2π)=0g(2\pi) = \frac{2}{11}(2\pi-2\pi) = 0.

3. Compare f(x)f(x) and g(x)g(x):

  • For x[0,π]x \in [0, \pi]: f(x)=sinx0f(x) = \sin x \ge 0. g(x)g(x) is positive or zero (from 00 to π/11\pi/11 and back to 00). The maximum value of g(x)g(x) is π110.285\frac{\pi}{11} \approx 0.285. The maximum value of f(x)f(x) is 11. Consider k(x)=f(x)g(x)k(x) = f(x) - g(x). For x[0,π/2]x \in [0, \pi/2], k(x)=sinx211xk(x) = \sin x - \frac{2}{11}x. k(0)=0k(0)=0. k(π/2)=1π11>0k(\pi/2) = 1 - \frac{\pi}{11} > 0. k(x)=cosx211k'(x) = \cos x - \frac{2}{11}. k(x)=0k'(x)=0 implies cosx=2/11\cos x = 2/11. At this point, k(x)k(x) has a local maximum. Since k(0)=0k(0)=0 and k(π/2)>0k(\pi/2)>0, and it's differentiable, k(x)0k(x) \ge 0 for x[0,π/2]x \in [0, \pi/2]. For x[π/2,π]x \in [\pi/2, \pi], k(x)=sinx211(πx)k(x) = \sin x - \frac{2}{11}(\pi-x). k(π/2)=1π11>0k(\pi/2) = 1 - \frac{\pi}{11} > 0. k(π)=0k(\pi)=0. k(x)=cosx+211k'(x) = \cos x + \frac{2}{11}. Similar analysis shows k(x)0k(x) \ge 0 for x[π/2,π]x \in [\pi/2, \pi]. Therefore, f(x)g(x)f(x) \ge g(x) for x[0,π]x \in [0, \pi].

  • For x[π,2π]x \in [\pi, 2\pi]: f(x)=sinx0f(x) = -\sin x \ge 0. g(x)g(x) is negative or zero (from 00 to π/11-\pi/11 and back to 00). Since f(x)0f(x) \ge 0 and g(x)0g(x) \le 0 in this interval, it is clear that f(x)g(x)f(x) \ge g(x) for x[π,2π]x \in [\pi, 2\pi].

Since f(x)g(x)f(x) \ge g(x) for all x[0,2π]x \in [0, 2\pi], the area bounded by the curves is given by 02π(f(x)g(x))dx\int_0^{2\pi} (f(x) - g(x)) dx.

4. Calculate the area:

Area A=02π(f(x)g(x))dx=02πf(x)dx02πg(x)dxA = \int_0^{2\pi} (f(x) - g(x)) dx = \int_0^{2\pi} f(x) dx - \int_0^{2\pi} g(x) dx.

We already calculated 02πf(x)dx=4\int_0^{2\pi} f(x) dx = 4.

Now, calculate 02πg(x)dx\int_0^{2\pi} g(x) dx: 02πg(x)dx=0π/2211xdx+π/23π/2211(πx)dx+3π/22π211(x2π)dx\int_0^{2\pi} g(x) dx = \int_0^{\pi/2} \frac{2}{11}x dx + \int_{\pi/2}^{3\pi/2} \frac{2}{11}(\pi-x) dx + \int_{3\pi/2}^{2\pi} \frac{2}{11}(x-2\pi) dx

First integral: 0π/2211xdx=211[x22]0π/2=111(π240)=π244\int_0^{\pi/2} \frac{2}{11}x dx = \frac{2}{11} \left[\frac{x^2}{2}\right]_0^{\pi/2} = \frac{1}{11} \left(\frac{\pi^2}{4} - 0\right) = \frac{\pi^2}{44}.

Second integral: π/23π/2211(πx)dx=211[πxx22]π/23π/2\int_{\pi/2}^{3\pi/2} \frac{2}{11}(\pi-x) dx = \frac{2}{11} \left[\pi x - \frac{x^2}{2}\right]_{\pi/2}^{3\pi/2} =211[(π3π2(3π/2)22)(ππ2(π/2)22)]= \frac{2}{11} \left[ \left(\pi\frac{3\pi}{2} - \frac{(3\pi/2)^2}{2}\right) - \left(\pi\frac{\pi}{2} - \frac{(\pi/2)^2}{2}\right) \right] =211[(3π229π28)(π22π28)]= \frac{2}{11} \left[ \left(\frac{3\pi^2}{2} - \frac{9\pi^2}{8}\right) - \left(\frac{\pi^2}{2} - \frac{\pi^2}{8}\right) \right] =211[(12π29π28)(4π2π28)]= \frac{2}{11} \left[ \left(\frac{12\pi^2 - 9\pi^2}{8}\right) - \left(\frac{4\pi^2 - \pi^2}{8}\right) \right] =211[3π283π28]=0= \frac{2}{11} \left[ \frac{3\pi^2}{8} - \frac{3\pi^2}{8} \right] = 0.

Third integral: 3π/22π211(x2π)dx=211[x222πx]3π/22π\int_{3\pi/2}^{2\pi} \frac{2}{11}(x-2\pi) dx = \frac{2}{11} \left[\frac{x^2}{2} - 2\pi x\right]_{3\pi/2}^{2\pi} =211[((2π)222π(2π))((3π/2)222π3π2)]= \frac{2}{11} \left[ \left(\frac{(2\pi)^2}{2} - 2\pi(2\pi)\right) - \left(\frac{(3\pi/2)^2}{2} - 2\pi\frac{3\pi}{2}\right) \right] =211[(2π24π2)(9π283π2)]= \frac{2}{11} \left[ \left(2\pi^2 - 4\pi^2\right) - \left(\frac{9\pi^2}{8} - 3\pi^2\right) \right] =211[2π2(9π224π28)]= \frac{2}{11} \left[ -2\pi^2 - \left(\frac{9\pi^2 - 24\pi^2}{8}\right) \right] =211[2π2(15π28)]= \frac{2}{11} \left[ -2\pi^2 - \left(-\frac{15\pi^2}{8}\right) \right] =211[2π2+15π28]=211[16π2+15π28]=211(π28)=π244= \frac{2}{11} \left[ -2\pi^2 + \frac{15\pi^2}{8} \right] = \frac{2}{11} \left[ \frac{-16\pi^2 + 15\pi^2}{8} \right] = \frac{2}{11} \left(-\frac{\pi^2}{8}\right) = -\frac{\pi^2}{44}.

Summing the integrals for g(x)g(x): 02πg(x)dx=π244+0π244=0\int_0^{2\pi} g(x) dx = \frac{\pi^2}{44} + 0 - \frac{\pi^2}{44} = 0.

Finally, the total area is A=40=4A = 4 - 0 = 4.