Solveeit Logo

Question

Question: A ray of light is incident on a parallel slab of thickness t and refractive index $\mu$. If the angl...

A ray of light is incident on a parallel slab of thickness t and refractive index μ\mu. If the angle of incidence is θ\theta then for small θ\theta show that the lateral displacement of light ray will be Δ=tθ(μ1)μ\Delta = \frac{t\theta(\mu - 1)}{\mu}.

Answer

The lateral displacement of the light ray for small angle of incidence θ\theta is Δ=tθ(μ1)μ\Delta = \frac{t\theta(\mu - 1)}{\mu}.

Explanation

Solution

  1. Snell's Law: 1sinθ=μsinϕ1 \cdot \sin \theta = \mu \sin \phi.
  2. Lateral Displacement Formula: Δ=tsin(θϕ)cosϕ\Delta = \frac{t \sin(\theta - \phi)}{\cos \phi}.
  3. Small Angle Approximation: For small θ\theta, sinθθ\sin \theta \approx \theta, cosϕ1\cos \phi \approx 1, and ϕθ/μ\phi \approx \theta/\mu (from Snell's Law: θμϕ\theta \approx \mu \phi).
  4. Substitution: Δt(θϕ)t(θθ/μ)=tθ(μ1)μ\Delta \approx t(\theta - \phi) \approx t(\theta - \theta/\mu) = \frac{t\theta(\mu-1)}{\mu}.