Solveeit Logo

Question

Question: Point A, B, C position vectors $3i-yj+2k$, $5i-j+k$ and $3xi+3j-k$ are collinear. The values of $x$ ...

Point A, B, C position vectors 3iyj+2k3i-yj+2k, 5ij+k5i-j+k and 3xi+3jk3xi+3j-k are collinear. The values of xx and yy came out to be as x=3/8x=3/8 and y=5y=5. Choose the correct option.

Answer

The values of x and y given in the question are incorrect.

Explanation

Solution

To determine if the given values of xx and yy are correct for collinear points, we use the property that if three points A, B, and C are collinear, then the vector AB\vec{AB} must be parallel to the vector BC\vec{BC}. This implies that AB=kBC\vec{AB} = k \vec{BC} for some scalar kk.

Let the position vectors of points A, B, and C be a\vec{a}, b\vec{b}, and c\vec{c} respectively.

Given: a=3iyj+2k\vec{a} = 3\mathbf{i} - y\mathbf{j} + 2\mathbf{k}

b=5ij+k\vec{b} = 5\mathbf{i} - \mathbf{j} + \mathbf{k}

c=3xi+3jk\vec{c} = 3x\mathbf{i} + 3\mathbf{j} - \mathbf{k}

First, calculate the vectors AB\vec{AB} and BC\vec{BC}:

AB=ba=(53)i+(1(y))j+(12)k\vec{AB} = \vec{b} - \vec{a} = (5-3)\mathbf{i} + (-1 - (-y))\mathbf{j} + (1-2)\mathbf{k} AB=2i+(y1)jk\vec{AB} = 2\mathbf{i} + (y-1)\mathbf{j} - \mathbf{k}

BC=cb=(3x5)i+(3(1))j+(11)k\vec{BC} = \vec{c} - \vec{b} = (3x-5)\mathbf{i} + (3 - (-1))\mathbf{j} + (-1-1)\mathbf{k} BC=(3x5)i+4j2k\vec{BC} = (3x-5)\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}

For points A, B, C to be collinear, AB\vec{AB} must be a scalar multiple of BC\vec{BC}. So, AB=kBC\vec{AB} = k \vec{BC} 2i+(y1)jk=k((3x5)i+4j2k)2\mathbf{i} + (y-1)\mathbf{j} - \mathbf{k} = k((3x-5)\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})

Equating the corresponding components:

  1. For the k\mathbf{k} component: 1=k(2)-1 = k(-2) k=12=12k = \frac{-1}{-2} = \frac{1}{2}

  2. For the i\mathbf{i} component: 2=k(3x5)2 = k(3x-5) Substitute k=12k = \frac{1}{2}: 2=12(3x5)2 = \frac{1}{2}(3x-5) 4=3x54 = 3x-5 3x=93x = 9 x=3x = 3

  3. For the j\mathbf{j} component: y1=k(4)y-1 = k(4) Substitute k=12k = \frac{1}{2}: y1=12(4)y-1 = \frac{1}{2}(4) y1=2y-1 = 2 y=3y = 3

Thus, for the points A, B, C to be collinear, the values of xx and yy must be x=3x=3 and y=3y=3.

The question states that the values of xx and yy came out to be x=3/8x=3/8 and y=5y=5.

Comparing our calculated values (x=3,y=3x=3, y=3) with the given values (x=3/8,y=5x=3/8, y=5), we find that they do not match. Therefore, the statement given in the question is incorrect.

In summary: The values of xx and yy that make points A, B, C collinear are x=3x=3 and y=3y=3. The values provided in the question (x=3/8x=3/8 and y=5y=5) are incorrect.