Solveeit Logo

Question

Question: If $x + \frac{1}{x} = 2 \cos \theta$, then x is equal to...

If x+1x=2cosθx + \frac{1}{x} = 2 \cos \theta, then x is equal to

A

sinθ±icosθ\sin \theta \pm i \cos \theta

B

2cosθ2 \cos \theta

C

2sinθ2 \sin \theta

D

cosθ±isinθ\cos \theta \pm i \sin \theta

Answer

cosθ±isinθ\cos \theta \pm i \sin \theta

Explanation

Solution

The given equation x+1x=2cosθx + \frac{1}{x} = 2 \cos \theta is transformed into a quadratic equation x2(2cosθ)x+1=0x^2 - (2 \cos \theta) x + 1 = 0. Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, we substitute a=1a=1, b=2cosθb=-2 \cos \theta, and c=1c=1. This yields x=2cosθ±4cos2θ42x = \frac{2 \cos \theta \pm \sqrt{4 \cos^2 \theta - 4}}{2}. Simplifying the term under the square root using the identity cos2θ1=sin2θ\cos^2 \theta - 1 = -\sin^2 \theta, we get x=2cosθ±4sin2θ2x = \frac{2 \cos \theta \pm \sqrt{-4 \sin^2 \theta}}{2}. Introducing the imaginary unit i=1i = \sqrt{-1}, this simplifies to x=2cosθ±2isinθ2x = \frac{2 \cos \theta \pm 2i \sin \theta}{2}, which further simplifies to x=cosθ±isinθx = \cos \theta \pm i \sin \theta.