Solveeit Logo

Question

Question: For a grouped frequency distribution with intervals 5-15, 15-25, and 25-35, with frequencies 10, 20,...

For a grouped frequency distribution with intervals 5-15, 15-25, and 25-35, with frequencies 10, 20, and 15 and mean 20, what is the variance?

A

50

B

56

C

120

D

110

Answer

56

Explanation

Solution

To find the variance for a grouped frequency distribution, we use the formula:

σ2=fi(xixˉ)2fi\sigma^2 = \frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i}

Where:

  • fif_i is the frequency of each class.
  • xix_i is the midpoint of each class.
  • xˉ\bar{x} is the mean of the distribution.
  • fi\sum f_i is the total frequency (N).

Given data:

Class IntervalFrequencies (fif_i)
5-1510
15-2520
25-3515

The mean (xˉ\bar{x}) is given as 20.

Step 1: Calculate the midpoints (xix_i) for each class interval.

  • For 5-15: x1=5+152=10x_1 = \frac{5 + 15}{2} = 10
  • For 15-25: x2=15+252=20x_2 = \frac{15 + 25}{2} = 20
  • For 25-35: x3=25+352=30x_3 = \frac{25 + 35}{2} = 30

Step 2: Create a table for calculations.

Class IntervalFrequency (fif_i)Midpoint (xix_i)(xixˉ)(x_i - \bar{x})(xixˉ)2(x_i - \bar{x})^2fi(xixˉ)2f_i (x_i - \bar{x})^2
5-1510101020=1010 - 20 = -10(10)2=100(-10)^2 = 10010×100=100010 \times 100 = 1000
15-2520202020=020 - 20 = 002=00^2 = 020×0=020 \times 0 = 0
25-3515303020=1030 - 20 = 10102=10010^2 = 10015×100=150015 \times 100 = 1500
Totalfi=45\sum f_i = 45fi(xixˉ)2=1000+0+1500=2500\sum f_i (x_i - \bar{x})^2 = 1000 + 0 + 1500 = 2500

Step 3: Calculate the variance.

σ2=fi(xixˉ)2fi=250045\sigma^2 = \frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i} = \frac{2500}{45}

Simplify the fraction:

σ2=2500÷545÷5=5009\sigma^2 = \frac{2500 \div 5}{45 \div 5} = \frac{500}{9}

Convert to decimal:

σ255.555...\sigma^2 \approx 55.555...

Step 4: Compare with the given options.

The calculated variance is approximately 55.56. Among the given options, 56 is the closest value.

Note: If we were to calculate the mean from the given data, it would be xˉcalc=fixifi=(10×10)+(20×20)+(15×30)45=100+400+45045=95045=190921.11\bar{x}_{calc} = \frac{\sum f_i x_i}{\sum f_i} = \frac{(10 \times 10) + (20 \times 20) + (15 \times 30)}{45} = \frac{100 + 400 + 450}{45} = \frac{950}{45} = \frac{190}{9} \approx 21.11. Since the problem explicitly states "mean 20", we use this given value for the variance calculation.