Solveeit Logo

Question

Question: 200 mL, 0.6 M $CuSO_4$ solution is electrolyzed by platinum electrodes for 1447.5 sec by steady curr...

200 mL, 0.6 M CuSO4CuSO_4 solution is electrolyzed by platinum electrodes for 1447.5 sec by steady current of 5A (50% efficiency). The concentration of solution after electrolysis is x ×\times 10110^{-1} M. The value of x is (nearest integer)

Answer

5

Explanation

Solution

The problem asks us to determine the final concentration of CuSO4CuSO_4 solution after electrolysis.

Here's a step-by-step solution:

1. Calculate initial moles of CuSO4CuSO_4: The initial volume of the solution is 200 mL = 0.2 L. The initial molarity is 0.6 M. Initial moles of CuSO4=Molarity×Volume=0.6 mol/L×0.2 L=0.12 molCuSO_4 = \text{Molarity} \times \text{Volume} = 0.6 \text{ mol/L} \times 0.2 \text{ L} = 0.12 \text{ mol}.

2. Calculate the total charge passed: The current (I) is 5 A. The time (t) is 1447.5 s. Total charge (QtotalQ_{total}) = I×t=5 A×1447.5 s=7237.5 CI \times t = 5 \text{ A} \times 1447.5 \text{ s} = 7237.5 \text{ C}.

3. Calculate the effective charge (considering efficiency): The efficiency of electrolysis is 50% (0.5). Effective charge (QeffectiveQ_{effective}) = Qtotal×Efficiency=7237.5 C×0.5=3618.75 CQ_{total} \times \text{Efficiency} = 7237.5 \text{ C} \times 0.5 = 3618.75 \text{ C}.

4. Calculate the moles of electrons passed: We use Faraday's constant (F = 96485 C/mol ee^-). Moles of electrons (nen_{e^-}) = QeffectiveF=3618.75 C96485 C/mol e0.037505 mol e\frac{Q_{effective}}{F} = \frac{3618.75 \text{ C}}{96485 \text{ C/mol } e^-} \approx 0.037505 \text{ mol } e^-.

5. Determine the moles of Cu2+Cu^{2+} consumed: At the cathode, the reaction is the reduction of copper ions: Cu2+(aq)+2eCu(s)Cu^{2+}(aq) + 2e^- \rightarrow Cu(s) From the stoichiometry, 2 moles of electrons are required to deposit 1 mole of Cu (or consume 1 mole of Cu2+Cu^{2+}). Moles of Cu2+Cu^{2+} consumed = Moles of e2=0.037505 mol20.0187525 mol\frac{\text{Moles of } e^-}{2} = \frac{0.037505 \text{ mol}}{2} \approx 0.0187525 \text{ mol}.

6. Calculate the final moles of CuSO4CuSO_4: Since CuSO4CuSO_4 dissociates into Cu2+Cu^{2+} and SO42SO_4^{2-}, the consumption of Cu2+Cu^{2+} ions directly reduces the moles of CuSO4CuSO_4 in the solution. Final moles of CuSO4=Initial molesMoles of Cu2+ consumedCuSO_4 = \text{Initial moles} - \text{Moles of } Cu^{2+} \text{ consumed} Final moles of CuSO4=0.12 mol0.0187525 mol=0.1012475 molCuSO_4 = 0.12 \text{ mol} - 0.0187525 \text{ mol} = 0.1012475 \text{ mol}.

7. Calculate the final concentration of CuSO4CuSO_4: The volume of the solution remains 0.2 L (assuming no significant volume change due to deposition). Final concentration = Final molesVolume=0.1012475 mol0.2 L=0.5062375 M\frac{\text{Final moles}}{\text{Volume}} = \frac{0.1012475 \text{ mol}}{0.2 \text{ L}} = 0.5062375 \text{ M}.

8. Express the concentration in the required format: The question asks for the concentration in the format x×101x \times 10^{-1} M. 0.5062375 M=5.062375×101 M0.5062375 \text{ M} = 5.062375 \times 10^{-1} \text{ M}. Therefore, x=5.062375x = 5.062375.

9. Find the nearest integer value of x: The nearest integer to 5.062375 is 5.

The final answer is 5\boxed{5}.

Explanation of the solution:

  1. Calculated initial moles of CuSO4CuSO_4 using given volume and molarity.
  2. Calculated total charge passed using current and time.
  3. Adjusted total charge for 50% efficiency to find effective charge used for electrolysis.
  4. Used Faraday's first law to convert effective charge to moles of electrons.
  5. Used the stoichiometry of Cu2++2eCu(s)Cu^{2+} + 2e^- \rightarrow Cu(s) to find moles of Cu2+Cu^{2+} consumed from moles of electrons.
  6. Subtracted consumed moles of Cu2+Cu^{2+} from initial moles of CuSO4CuSO_4 to get final moles.
  7. Calculated final concentration by dividing final moles by the initial volume (assuming constant volume).
  8. Expressed the final concentration in the specified format (x×101x \times 10^{-1} M) and rounded x to the nearest integer.