Solveeit Logo

Question

Question: The value of the integral $\int_{1/4}^{3/4} f(f(x))\, dx$, where $f(x)=\frac{4^x}{2+4^x}$ is $K$, th...

The value of the integral 1/43/4f(f(x))dx\int_{1/4}^{3/4} f(f(x))\, dx, where f(x)=4x2+4xf(x)=\frac{4^x}{2+4^x} is KK, then 100 KK is

Answer

25

Explanation

Solution

To evaluate the integral K=1/43/4f(f(x))dxK = \int_{1/4}^{3/4} f(f(x))\, dx, where f(x)=4x2+4xf(x)=\frac{4^x}{2+4^x}, we first analyze the properties of the function f(x)f(x).

Step 1: Analyze the function f(x)f(x)

The given function is f(x)=4x2+4xf(x) = \frac{4^x}{2+4^x}. Let's check the property f(x)+f(1x)f(x) + f(1-x). f(1x)=41x2+41x=4/4x2+4/4x=4/4x(24x+4)/4x=424x+4=24x+2f(1-x) = \frac{4^{1-x}}{2+4^{1-x}} = \frac{4/4^x}{2+4/4^x} = \frac{4/4^x}{(2 \cdot 4^x + 4)/4^x} = \frac{4}{2 \cdot 4^x + 4} = \frac{2}{4^x+2}. Now, add f(x)f(x) and f(1x)f(1-x): f(x)+f(1x)=4x2+4x+22+4x=4x+22+4x=1f(x) + f(1-x) = \frac{4^x}{2+4^x} + \frac{2}{2+4^x} = \frac{4^x+2}{2+4^x} = 1. So, we have the important property: f(x)+f(1x)=1f(x) + f(1-x) = 1. This implies f(1x)=1f(x)f(1-x) = 1 - f(x).

Step 2: Determine the range of f(x)f(x)

For xRx \in \mathbb{R}, 4x>04^x > 0. f(x)=4x2+4xf(x) = \frac{4^x}{2+4^x}. Since 4x>04^x > 0, f(x)>0f(x) > 0. Also, f(x)=4x2+4x=12/4x+1f(x) = \frac{4^x}{2+4^x} = \frac{1}{2/4^x + 1}. Since 2/4x>02/4^x > 0, we have 2/4x+1>12/4^x + 1 > 1. Therefore, 0<12/4x+1<10 < \frac{1}{2/4^x + 1} < 1. So, the range of f(x)f(x) is (0,1)(0,1).

Step 3: Evaluate the integral KK

Let K=1/43/4f(f(x))dxK = \int_{1/4}^{3/4} f(f(x))\, dx. We use the property of definite integrals: abg(x)dx=abg(a+bx)dx\int_a^b g(x) dx = \int_a^b g(a+b-x) dx. Here, a=1/4a=1/4 and b=3/4b=3/4, so a+b=1/4+3/4=1a+b = 1/4 + 3/4 = 1. Applying this property to KK: K=1/43/4f(f(1x))dxK = \int_{1/4}^{3/4} f(f(1-x))\, dx.

From Step 1, we know f(1x)=1f(x)f(1-x) = 1-f(x). Substitute this into the integral: K=1/43/4f(1f(x))dxK = \int_{1/4}^{3/4} f(1-f(x))\, dx.

Now, let y=f(x)y = f(x). From Step 2, we know that y(0,1)y \in (0,1). Since y(0,1)y \in (0,1), 1y(0,1)1-y \in (0,1). The property f(z)+f(1z)=1f(z) + f(1-z) = 1 holds for any zz in the domain of ff. Since yy and 1y1-y are in (0,1)(0,1), which is part of the domain of ff, we can apply the property for z=yz=y: f(y)+f(1y)=1    f(1y)=1f(y)f(y) + f(1-y) = 1 \implies f(1-y) = 1-f(y). Replacing yy with f(x)f(x), we get f(1f(x))=1f(f(x))f(1-f(x)) = 1-f(f(x)).

Substitute this back into the integral for KK: K=1/43/4(1f(f(x)))dxK = \int_{1/4}^{3/4} (1-f(f(x)))\, dx. Split the integral: K=1/43/41dx1/43/4f(f(x))dxK = \int_{1/4}^{3/4} 1\, dx - \int_{1/4}^{3/4} f(f(x))\, dx. The second term on the right side is again KK: K=[x]1/43/4KK = [x]_{1/4}^{3/4} - K. K=(3414)KK = \left(\frac{3}{4} - \frac{1}{4}\right) - K. K=24KK = \frac{2}{4} - K. K=12KK = \frac{1}{2} - K. Now, solve for KK: 2K=122K = \frac{1}{2}. K=14K = \frac{1}{4}.

Step 4: Calculate 100K100K

The question asks for the value of 100K100K. 100K=100×14=25100K = 100 \times \frac{1}{4} = 25.

The final answer is 25\boxed{25}.