Question
Question: The value of the integral $\int_{1/4}^{3/4} f(f(x))\, dx$, where $f(x)=\frac{4^x}{2+4^x}$ is $K$, th...
The value of the integral ∫1/43/4f(f(x))dx, where f(x)=2+4x4x is K, then 100 K is

25
Solution
To evaluate the integral K=∫1/43/4f(f(x))dx, where f(x)=2+4x4x, we first analyze the properties of the function f(x).
Step 1: Analyze the function f(x)
The given function is f(x)=2+4x4x. Let's check the property f(x)+f(1−x). f(1−x)=2+41−x41−x=2+4/4x4/4x=(2⋅4x+4)/4x4/4x=2⋅4x+44=4x+22. Now, add f(x) and f(1−x): f(x)+f(1−x)=2+4x4x+2+4x2=2+4x4x+2=1. So, we have the important property: f(x)+f(1−x)=1. This implies f(1−x)=1−f(x).
Step 2: Determine the range of f(x)
For x∈R, 4x>0. f(x)=2+4x4x. Since 4x>0, f(x)>0. Also, f(x)=2+4x4x=2/4x+11. Since 2/4x>0, we have 2/4x+1>1. Therefore, 0<2/4x+11<1. So, the range of f(x) is (0,1).
Step 3: Evaluate the integral K
Let K=∫1/43/4f(f(x))dx. We use the property of definite integrals: ∫abg(x)dx=∫abg(a+b−x)dx. Here, a=1/4 and b=3/4, so a+b=1/4+3/4=1. Applying this property to K: K=∫1/43/4f(f(1−x))dx.
From Step 1, we know f(1−x)=1−f(x). Substitute this into the integral: K=∫1/43/4f(1−f(x))dx.
Now, let y=f(x). From Step 2, we know that y∈(0,1). Since y∈(0,1), 1−y∈(0,1). The property f(z)+f(1−z)=1 holds for any z in the domain of f. Since y and 1−y are in (0,1), which is part of the domain of f, we can apply the property for z=y: f(y)+f(1−y)=1⟹f(1−y)=1−f(y). Replacing y with f(x), we get f(1−f(x))=1−f(f(x)).
Substitute this back into the integral for K: K=∫1/43/4(1−f(f(x)))dx. Split the integral: K=∫1/43/41dx−∫1/43/4f(f(x))dx. The second term on the right side is again K: K=[x]1/43/4−K. K=(43−41)−K. K=42−K. K=21−K. Now, solve for K: 2K=21. K=41.
Step 4: Calculate 100K
The question asks for the value of 100K. 100K=100×41=25.
The final answer is 25.