Question
Question: Let $I = \int_{2}^{2.5} (\frac{e^x - e^{-x}}{e^x + e^{-x}} + 2) \, dx$ and $J = \int_{2 + \frac{e^{4...
Let I=∫22.5(ex+e−xex−e−x+2)dx and J=∫2+e4+1e4−12+e5+1e5−1ln3−xx−1dx.
If I+J=a−5(e5+11)+4(e4+11), then a is (where a is a rational number)

3/2
Solution
To evaluate I+J, we will evaluate I and J separately.
1. Evaluate Integral I: I=∫22.5(ex+e−xex−e−x+2)dx The term ex+e−xex−e−x is the definition of tanhx. So, I=∫22.5(tanhx+2)dx We know that ∫tanhxdx=ln∣coshx∣+C. Since coshx=2ex+e−x is always positive, we can write ln(coshx). I=[ln(coshx)+2x]22.5 I=(ln(cosh2.5)+2(2.5))−(ln(cosh2)+2(2)) I=ln(cosh2.5)+5−ln(cosh2)−4 I=ln(cosh2.5)−ln(cosh2)+1
2. Evaluate Integral J: J=∫2+e4+1e4−12+e5+1e5−1ln3−xx−1dx Let's use the substitution x=2+tanhy. Then dx=sech2ydy.
Now, let's change the limits of integration: For the lower limit, x=2+e4+1e4−1. So, 2+tanhy=2+e4+1e4−1⇒tanhy=e4+1e4−1. We know that tanhy=ey+e−yey−e−y=e2y+1e2y−1. Comparing e2y+1e2y−1 with e4+1e4−1, we get e2y=e4, which implies 2y=4, so y=2.
For the upper limit, x=2+e5+1e5−1. Similarly, tanhy=e5+1e5−1, which implies e2y=e5, so 2y=5, and y=2.5.
Now, let's transform the integrand: ln3−xx−1=ln3−(2+tanhy)(2+tanhy)−1=ln1−tanhy1+tanhy We know that 1−tanhy1+tanhy=1−coshysinhy1+coshysinhy=coshy−sinhycoshy+sinhy=e−yey=e2y. So, ln1−tanhy1+tanhy=lne2y=ln(ey)=y.
Substituting these into the integral J: J=∫22.5y⋅sech2ydy We use integration by parts, ∫udv=uv−∫vdu. Let u=y and dv=sech2ydy. Then du=dy and v=∫sech2ydy=tanhy. J=[ytanhy]22.5−∫22.5tanhydy J=(2.5tanh2.5−2tanh2)−[ln(coshy)]22.5 J=(2.5tanh2.5−2tanh2)−(ln(cosh2.5)−ln(cosh2)) J=2.5tanh2.5−2tanh2−ln(cosh2.5)+ln(cosh2)
3. Calculate I+J: I+J=(ln(cosh2.5)−ln(cosh2)+1)+(2.5tanh2.5−2tanh2−ln(cosh2.5)+ln(cosh2)) Notice that the ln(coshx) terms cancel out. I+J=1+2.5tanh2.5−2tanh2
Now, express tanhx in terms of exponentials: tanhx=e2x+1e2x−1. I+J=1+2.5(e2(2.5)+1e2(2.5)−1)−2(e2(2)+1e2(2)−1) I+J=1+2.5(e5+1e5−1)−2(e4+1e4−1) To match the given form a−5(e5+11)+4(e4+11), we manipulate the terms: I+J=1+25(e5+1e5+1−2)−2(e4+1e4+1−2) I+J=1+25(1−e5+12)−2(1−e4+12) I+J=1+25−25⋅e5+12−2+2⋅e4+12 I+J=1+25−2−e5+15+e4+14 I+J=(1+25−2)−e5+15+e4+14 I+J=(22+5−4)−e5+15+e4+14 I+J=23−e5+15+e4+14
4. Determine a: Comparing our result with the given expression I+J=a−5(e5+11)+4(e4+11), we find: a=23