Solveeit Logo

Question

Question: Let $I = \int_{2}^{2.5} (\frac{e^x - e^{-x}}{e^x + e^{-x}} + 2) \, dx$ and $J = \int_{2 + \frac{e^{4...

Let I=22.5(exexex+ex+2)dxI = \int_{2}^{2.5} (\frac{e^x - e^{-x}}{e^x + e^{-x}} + 2) \, dx and J=2+e41e4+12+e51e5+1lnx13xdxJ = \int_{2 + \frac{e^{4}-1}{e^{4}+1}}^{2 + \frac{e^{5}-1}{e^{5}+1}} \ln \sqrt{\frac{x-1}{3-x}} \, dx.

If I+J=a5(1e5+1)+4(1e4+1)I + J = a - 5(\frac{1}{e^5 + 1}) + 4(\frac{1}{e^4 + 1}), then aa is (where aa is a rational number)

Answer

3/2

Explanation

Solution

To evaluate I+JI+J, we will evaluate II and JJ separately.

1. Evaluate Integral II: I=22.5(exexex+ex+2)dxI = \int_{2}^{2.5} \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} + 2\right) \, dx The term exexex+ex\frac{e^x - e^{-x}}{e^x + e^{-x}} is the definition of tanhx\tanh x. So, I=22.5(tanhx+2)dxI = \int_{2}^{2.5} (\tanh x + 2) \, dx We know that tanhxdx=lncoshx+C\int \tanh x \, dx = \ln|\cosh x| + C. Since coshx=ex+ex2\cosh x = \frac{e^x + e^{-x}}{2} is always positive, we can write ln(coshx)\ln(\cosh x). I=[ln(coshx)+2x]22.5I = [\ln(\cosh x) + 2x]_{2}^{2.5} I=(ln(cosh2.5)+2(2.5))(ln(cosh2)+2(2))I = (\ln(\cosh 2.5) + 2(2.5)) - (\ln(\cosh 2) + 2(2)) I=ln(cosh2.5)+5ln(cosh2)4I = \ln(\cosh 2.5) + 5 - \ln(\cosh 2) - 4 I=ln(cosh2.5)ln(cosh2)+1I = \ln(\cosh 2.5) - \ln(\cosh 2) + 1

2. Evaluate Integral JJ: J=2+e41e4+12+e51e5+1lnx13xdxJ = \int_{2 + \frac{e^{4}-1}{e^{4}+1}}^{2 + \frac{e^{5}-1}{e^{5}+1}} \ln \sqrt{\frac{x-1}{3-x}} \, dx Let's use the substitution x=2+tanhyx = 2 + \tanh y. Then dx=sech2ydydx = \text{sech}^2 y \, dy.

Now, let's change the limits of integration: For the lower limit, x=2+e41e4+1x = 2 + \frac{e^{4}-1}{e^{4}+1}. So, 2+tanhy=2+e41e4+1tanhy=e41e4+12 + \tanh y = 2 + \frac{e^{4}-1}{e^{4}+1} \Rightarrow \tanh y = \frac{e^{4}-1}{e^{4}+1}. We know that tanhy=eyeyey+ey=e2y1e2y+1\tanh y = \frac{e^y - e^{-y}}{e^y + e^{-y}} = \frac{e^{2y} - 1}{e^{2y} + 1}. Comparing e2y1e2y+1\frac{e^{2y} - 1}{e^{2y} + 1} with e41e4+1\frac{e^{4}-1}{e^{4}+1}, we get e2y=e4e^{2y} = e^4, which implies 2y=42y = 4, so y=2y = 2.

For the upper limit, x=2+e51e5+1x = 2 + \frac{e^{5}-1}{e^{5}+1}. Similarly, tanhy=e51e5+1\tanh y = \frac{e^{5}-1}{e^{5}+1}, which implies e2y=e5e^{2y} = e^5, so 2y=52y = 5, and y=2.5y = 2.5.

Now, let's transform the integrand: lnx13x=ln(2+tanhy)13(2+tanhy)=ln1+tanhy1tanhy\ln \sqrt{\frac{x-1}{3-x}} = \ln \sqrt{\frac{(2 + \tanh y) - 1}{3 - (2 + \tanh y)}} = \ln \sqrt{\frac{1 + \tanh y}{1 - \tanh y}} We know that 1+tanhy1tanhy=1+sinhycoshy1sinhycoshy=coshy+sinhycoshysinhy=eyey=e2y\frac{1 + \tanh y}{1 - \tanh y} = \frac{1 + \frac{\sinh y}{\cosh y}}{1 - \frac{\sinh y}{\cosh y}} = \frac{\cosh y + \sinh y}{\cosh y - \sinh y} = \frac{e^y}{e^{-y}} = e^{2y}. So, ln1+tanhy1tanhy=lne2y=ln(ey)=y\ln \sqrt{\frac{1 + \tanh y}{1 - \tanh y}} = \ln \sqrt{e^{2y}} = \ln(e^y) = y.

Substituting these into the integral JJ: J=22.5ysech2ydyJ = \int_{2}^{2.5} y \cdot \text{sech}^2 y \, dy We use integration by parts, udv=uvvdu\int u \, dv = uv - \int v \, du. Let u=yu = y and dv=sech2ydydv = \text{sech}^2 y \, dy. Then du=dydu = dy and v=sech2ydy=tanhyv = \int \text{sech}^2 y \, dy = \tanh y. J=[ytanhy]22.522.5tanhydyJ = [y \tanh y]_{2}^{2.5} - \int_{2}^{2.5} \tanh y \, dy J=(2.5tanh2.52tanh2)[ln(coshy)]22.5J = (2.5 \tanh 2.5 - 2 \tanh 2) - [\ln(\cosh y)]_{2}^{2.5} J=(2.5tanh2.52tanh2)(ln(cosh2.5)ln(cosh2))J = (2.5 \tanh 2.5 - 2 \tanh 2) - (\ln(\cosh 2.5) - \ln(\cosh 2)) J=2.5tanh2.52tanh2ln(cosh2.5)+ln(cosh2)J = 2.5 \tanh 2.5 - 2 \tanh 2 - \ln(\cosh 2.5) + \ln(\cosh 2)

3. Calculate I+JI + J: I+J=(ln(cosh2.5)ln(cosh2)+1)+(2.5tanh2.52tanh2ln(cosh2.5)+ln(cosh2))I + J = (\ln(\cosh 2.5) - \ln(\cosh 2) + 1) + (2.5 \tanh 2.5 - 2 \tanh 2 - \ln(\cosh 2.5) + \ln(\cosh 2)) Notice that the ln(coshx)\ln(\cosh x) terms cancel out. I+J=1+2.5tanh2.52tanh2I + J = 1 + 2.5 \tanh 2.5 - 2 \tanh 2

Now, express tanhx\tanh x in terms of exponentials: tanhx=e2x1e2x+1\tanh x = \frac{e^{2x} - 1}{e^{2x} + 1}. I+J=1+2.5(e2(2.5)1e2(2.5)+1)2(e2(2)1e2(2)+1)I + J = 1 + 2.5 \left(\frac{e^{2(2.5)} - 1}{e^{2(2.5)} + 1}\right) - 2 \left(\frac{e^{2(2)} - 1}{e^{2(2)} + 1}\right) I+J=1+2.5(e51e5+1)2(e41e4+1)I + J = 1 + 2.5 \left(\frac{e^5 - 1}{e^5 + 1}\right) - 2 \left(\frac{e^4 - 1}{e^4 + 1}\right) To match the given form a5(1e5+1)+4(1e4+1)a - 5(\frac{1}{e^5 + 1}) + 4(\frac{1}{e^4 + 1}), we manipulate the terms: I+J=1+52(e5+12e5+1)2(e4+12e4+1)I + J = 1 + \frac{5}{2} \left(\frac{e^5 + 1 - 2}{e^5 + 1}\right) - 2 \left(\frac{e^4 + 1 - 2}{e^4 + 1}\right) I+J=1+52(12e5+1)2(12e4+1)I + J = 1 + \frac{5}{2} \left(1 - \frac{2}{e^5 + 1}\right) - 2 \left(1 - \frac{2}{e^4 + 1}\right) I+J=1+52522e5+12+22e4+1I + J = 1 + \frac{5}{2} - \frac{5}{2} \cdot \frac{2}{e^5 + 1} - 2 + 2 \cdot \frac{2}{e^4 + 1} I+J=1+5225e5+1+4e4+1I + J = 1 + \frac{5}{2} - 2 - \frac{5}{e^5 + 1} + \frac{4}{e^4 + 1} I+J=(1+522)5e5+1+4e4+1I + J = \left(1 + \frac{5}{2} - 2\right) - \frac{5}{e^5 + 1} + \frac{4}{e^4 + 1} I+J=(2+542)5e5+1+4e4+1I + J = \left(\frac{2+5-4}{2}\right) - \frac{5}{e^5 + 1} + \frac{4}{e^4 + 1} I+J=325e5+1+4e4+1I + J = \frac{3}{2} - \frac{5}{e^5 + 1} + \frac{4}{e^4 + 1}

4. Determine aa: Comparing our result with the given expression I+J=a5(1e5+1)+4(1e4+1)I + J = a - 5(\frac{1}{e^5 + 1}) + 4(\frac{1}{e^4 + 1}), we find: a=32a = \frac{3}{2}