Solveeit Logo

Question

Question: For grouped data, if the class intervals are 10-20, 20-30, 30-40 with frequencies 5, 15, and 10, and...

For grouped data, if the class intervals are 10-20, 20-30, 30-40 with frequencies 5, 15, and 10, and the mean is 25, the variance is:

A

0%

B

0%

C

0%

D

0%

Answer

50

Explanation

Solution

To calculate the variance for grouped data, we use the formula:

σ2=i=1nfi(xixˉ)2i=1nfi\sigma^2 = \frac{\sum_{i=1}^{n} f_i (x_i - \bar{x})^2}{\sum_{i=1}^{n} f_i}

where:

  • xix_i are the midpoints of the class intervals.
  • fif_i are the frequencies of the class intervals.
  • xˉ\bar{x} is the mean of the distribution.

1. Determine the midpoints (xix_i) for each interval:

  • For the interval 10-20: x1=(10+20)/2=15x_1 = (10 + 20) / 2 = 15
  • For the interval 20-30: x2=(20+30)/2=25x_2 = (20 + 30) / 2 = 25
  • For the interval 30-40: x3=(30+40)/2=35x_3 = (30 + 40) / 2 = 35

2. List the given frequencies (fif_i):

  • f1=5f_1 = 5
  • f2=15f_2 = 15
  • f3=10f_3 = 10

3. Note the given mean (xˉ\bar{x}):

  • xˉ=25\bar{x} = 25

4. Calculate the total frequency (fi\sum f_i):

fi=5+15+10=30\sum f_i = 5 + 15 + 10 = 30

5. Calculate the deviation from the mean (xixˉx_i - \bar{x}), the squared deviation (xixˉ)2(x_i - \bar{x})^2, and fi(xixˉ)2f_i (x_i - \bar{x})^2 for each class:

Class IntervalMidpoint (xix_i)Frequency (fif_i)xixˉx_i - \bar{x}(xixˉ)2(x_i - \bar{x})^2fi(xixˉ)2f_i (x_i - \bar{x})^2
10-201551525=1015 - 25 = -10(10)2=100(-10)^2 = 1005×100=5005 \times 100 = 500
20-3025152525=025 - 25 = 0(0)2=0(0)^2 = 015×0=015 \times 0 = 0
30-4035103525=1035 - 25 = 10(10)2=100(10)^2 = 10010×100=100010 \times 100 = 1000
Totalfi=30\sum f_i = 30fi(xixˉ)2=500+0+1000=1500\sum f_i (x_i - \bar{x})^2 = 500 + 0 + 1000 = 1500

6. Calculate the variance (σ2\sigma^2):

σ2=fi(xixˉ)2fi=150030\sigma^2 = \frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i} = \frac{1500}{30} σ2=50\sigma^2 = 50