Question
Question: For grouped data, if the class intervals are 10-20, 20-30, 30-40 with frequencies 5, 15, and 10, and...
For grouped data, if the class intervals are 10-20, 20-30, 30-40 with frequencies 5, 15, and 10, and the mean is 25, the variance is:

A
0%
B
0%
C
0%
D
0%
Answer
50
Explanation
Solution
To calculate the variance for grouped data, we use the formula:
σ2=∑i=1nfi∑i=1nfi(xi−xˉ)2where:
- xi are the midpoints of the class intervals.
- fi are the frequencies of the class intervals.
- xˉ is the mean of the distribution.
1. Determine the midpoints (xi) for each interval:
- For the interval 10-20: x1=(10+20)/2=15
- For the interval 20-30: x2=(20+30)/2=25
- For the interval 30-40: x3=(30+40)/2=35
2. List the given frequencies (fi):
- f1=5
- f2=15
- f3=10
3. Note the given mean (xˉ):
- xˉ=25
4. Calculate the total frequency (∑fi):
∑fi=5+15+10=305. Calculate the deviation from the mean (xi−xˉ), the squared deviation (xi−xˉ)2, and fi(xi−xˉ)2 for each class:
Class Interval | Midpoint (xi) | Frequency (fi) | xi−xˉ | (xi−xˉ)2 | fi(xi−xˉ)2 |
---|---|---|---|---|---|
10-20 | 15 | 5 | 15−25=−10 | (−10)2=100 | 5×100=500 |
20-30 | 25 | 15 | 25−25=0 | (0)2=0 | 15×0=0 |
30-40 | 35 | 10 | 35−25=10 | (10)2=100 | 10×100=1000 |
Total | ∑fi=30 | ∑fi(xi−xˉ)2=500+0+1000=1500 |
6. Calculate the variance (σ2):
σ2=∑fi∑fi(xi−xˉ)2=301500 σ2=50